
eE
Sastri/ B.A 3rd YEAR

Course/Paper.4

CENTER OF DISTANCE & ONLINE EDUCATION

(Formerly Directorate of Distance Education)

NATIONAL SANSKRIT UNIVERSITY :: TIRUPATI-517 507 (A.P)
(Erstwhile Rashtriya Sanskrit Vidyapeetha, Tirupati)

PART – A

Data Base Management Systems

Computer Application

.

 1

Unit – I

Basic concepts of DBMS

 2

Structure

Chapter – 1

1.0.Objectives

1.1.Introduction

1.2.Basic concepts

1.2.1.Database

1.2.2.Database management system

1.2.3.Data independence

 The main objective of this unit is to make clear about what are data and

DBMS.

This chapter deals with DBMS, schemas at different levels.

1.2. Basic concepts
1.2.1. Database: A database is a collection of data. That may sound overly

simplistic but it pretty much sums up what any database is.

 A database could be as simple as a text file with a list of names. Or it

could be as complex as a large, relational database management system,

complete with in-built tools to help you maintain the data.

1.2.2. DBMS: DBMS stands for Data Base Management System. DBMS is

a collection of interrelated data and set of programs to access those data. The

primary goal of DBMS is to provide an environment that is both convenient

and efficient to use in retrieving and storing database information.

Unit – I Basic concepts

1.0. Objectives

1.1. Introduction

 3

The following are the advantages DBMS over traditional file processing

system:

1. Controlled data Redundancy: Data redundancy means information

appears in different files in different formats. This leads to repetitive

of information and waste storage space. Files that represent same kind

of information may become inconsistent. In database approach

‘views’ of different item is stored in only one place and does not

permit any inconsistency. Thus database controls redundancy by

saving the storage space and not allowing repetitive of information.

2. Integrity can be maintained: the data values stored in the database

must satisfy certain types of integrity constraints, for example the

balance of bank account should not fall below a prescribed amount say

Rs.300/-. DBMS enforces these constraints through various

application programs, thus DBMS improves data integrity which is

accurate consistent and up to date.

3. Providing backup and recovery: because a computer system is an

electronic device and it may subject to failure. It is crucial to ensure

that once a failure has occurred and has been removed the data are

restored to the consistent state that existed prior to the failure. DBMS

provides backup and recovery occur in the system. For example if the

computer fails during update operation and when it recovers backup

and recovery system ensure that the database is in prior state(i.e.,

before execution of update operation).

4. Maintaining security: every user of database system is not allowed to

access database. The database administrator (DBA) defines authorized

users to access the database. DBA specifies different security rules in

accessing database for different users.

5. Sharing of data: Sharing of data means the new applications can

share the existing data from the current database. This reduces

additional storage space.

 4

6. Enforcement of standards: Standardization in representing the data is

desirable in migration or interchange of data between the systems.

DBA ensures that all applicable standards are observed in data

representation.

7. providing multiple user interfaces: DBMS provides various types of

user interfaces for different users depending on technical knowledge/

these include query languages for casual users, programming language

interfaces for application programmers, forms and commands for

parametric users and menu driven interfaces for ordinary users.

8. Flexibility: It may be necessary to change the structure of database

due to changes in requirements. For example a user needs the

information that is currently not available in the database DBMS adds

new file to the database or extend the data fields in existing file

without affecting so stored data and application programs.

S.Q.A.1. Define DBMS with suitable example.

S.Q.A.1. What is consistency constraint?

 5

1.2.3. Data independence
Data independence is defined as the capacity to change the schema at

one level of database system without affecting the schema in the next

higher level.There are two types of data independence

a. Logical Data Independence: It is the ability to change the

 conceptual schema without having to change external schemas or

 application programs. The change in conceptual schema can

 expand the dataset by adding new data item or can reduce the

 structure of database by removing a data item. Changes to

 constraints can also be applied to the constraints can also be applied

 to the conceptual schema without effecting the external schemas.

 DBMS supports logical data independence by changing the view

 definition and mappings.

b. Physical Data Independence: It is the ability to change the

internal schema without affecting conceptual or external schemas.

Changes to the internal schema are necessary because of

reorganization of physical files. It provides new access paths to

the database in improving retrieval of information.

Summary

1. DBMS is a collection of interrelated data and set of programs to access

 those data. A dbms based on relational model is rdbms.

2. Data independence is defined as the capacity to change the schema at

 one level without effecting other two levels. This is of two types

 logical data independence and physical data independence.

I. Answer the following questions (10 marks)

1. Write short notes on DBMS.

2. Write short notes on DBA.

3. Write short notes data independence.

II. Answer the following questions (5 marks)

1. Define DBMS.

2. What is data independence?

 6

III. Answer the following questions (1 mark)

1. A database is collection of _________(data)

2. ____________ is a collection of interrelated data and set of programs

 to access those data. (DBMS).

3. _______________ means information appears in different files in

 different formats.(Data redundancy)

4. The ability to change the conceptual schema without having to change

 external schemas or application programs is called ______(logical data

 independence)

5. The ability to change the internal schema without affecting conceptual

 or external schemas is called ________ (physical data independence)

 7

Structure

2.0. Objective

2.1. Introduction

2.2. Architecture of Data base system

2.3. Data base administrator

2.4. Database languages

 2.4.1. DDL

 2.4.2. DML

The aim of this chapter is to clearly know about database system,

administrator and languages.

This chapter deals with Architecture of Data Base System, Data Base

Administrator (DBA) and database languages like Data Definition Languages

and Data Manipulation Languages.

2.2. Architecture of DBMS

The three important characteristics of DBMS are:

1. Insulation of programs and data.

2. Support of multiple use views and

3. Use of a catalog to store database system.

Thus architecture of database system is viewed as three level (schema)

architecture.

2.0. Objective

2.1. Introduction

Chapter – II Database System

 8

External
view 1

End users

External

 level

External/Conceptual

 Conceptual

 Level

Conceptual/Internal mapping

 Internal level

 Stored database

Above is the architecture of ABMS.

1.Internal Level: The internal view is low-level representation of entire

database. i.e., it describes physical storage structure of the database/ the

internal level describes how the data are actually are stored in the database.

Internal schema specifies the structure of data fields, the indexes and access

paths for the database.

2.Conceptual level: The conceptual level has a conceptual schema. It

describes what data are stored in the database and what relationships exist

among those data. The conceptual schema hides details of physical storage

structure and it concentrates only in logical structure of database. The

conceptual level is use by database administrator who decides what

information is to be kept.

3.External or view level: It includes number of external schemas or user

views. Each external schema describes a part of database in which a

particular use group is interested. It hides other part of database, which is not

External
view n

Conceptual
schema

Internal
schema

 9

required to the user group. Thus many users of database system can get

required information without accessing entire database.

2.3. Database Administrator (DBA): The person who has the central control

in defining the data and to write programs and to access the data in

database is known Database Administrator.

The following are the functions of database administrator.

2. Defining conceptual schema: it is the job of DBA to decide

what information is to be stored in the database. The DBA creates

conceptual database schema using DDL compiler.

3. Defining internal schema: The DBA must decide how the

data is to be represented in the database. This process is referring to as

physical database design. DBA defines storage structure using internal

DDL.

4. Liaising with users: It is the responsibility of DBA to liaise

with users to ensure that the data they require is available and helps the

users to write necessary external schemas using applicable external

DDL. The mapping between external schema and conceptual schema

must be defined by the DBA.

5. Granting of authorization for data access: The granting of

different types of authorization allows the DBA to regulate which parts

of the database various users con access.

6. Defining integrity rules: The data values stored in the database

must satisfy certain consistency constraints. For example, the age of

S.A.Q. What is the role of end user?

 10

an employee should not exceed 58 years such type of constraints must

be specified explicitly by the dataset administrator.

7. Defining backup and recovery procedures: Once an

enterprise committed to the database system it becomes critically

dependent on the successfully operation of system. In the event of

damages to the any portion of database it is the responsibility of DBA

to rectify the errors in database. DBA must define an appropriate

recovery procedures to dump (transfer) the data from damaged

database to back storage space.

8. Monitoring performance and responding to changing

requirements: DBA is responsible for organizing the system and

improving the performance. DBA should provide appropriate

adjustments to the system whenever requirement changes occur in the

system. Whenever changes occur in the database, DBA must ensure

that performance level is still acceptable.

2.4.Database Languages: A database system provides two different types of

languages. They are Data Definition Language (DDL) and Data

Manipulation Language (DML).

2.4.1. Data Definition Language (DDL): A database schema is

specified by a set of definitions expressed by a language called as

Bata Definition Language (DDL). The result of compilation of

DDL Statements is a set of tables. The tables are stored in a

special file called data directory or data catalog or data dictionary.

S.A.Q.1. What is role of DBA?

 11

Data catalog is a file that contents meta data. The storage structure

and access method used by the database system are specified by a

set of definitions in a special type of DDL called a data storage and

definition languages compiler. The result of this compiler is a set

of instructions, which specify the implementation details database

schema. The following are the examples for DDL in SQL

 CREATE DATABASE - creates a new database

 ALTER DATABASE - modifies a database

 CREATE TABLE - creates a new table

 ALTER TABLE - modifies a table

 DROP TABLE - deletes a table

 CREATE INDEX - creates an index (search key)

 DROP INDEX - deletes an index

2.4.2. Data Manipulation Language (DML): Manipulation of database

includes retrieval of information stored in a database, insertion of

new information into the database, deletion of information data, is

known as language. There are two types of DML s and they are

procedural DML and non-procedural DML. The procedural DML

(low level DML) requires a user to specify what data are needed

and how to get those data. Procedural DML is embedded in a

general purpose programming language. This type of DML

retrieves individual reports separately. The non-procedural DML

(high level) requires a user to specify what data are needed without

specifying how to get those data. Non-procedural DML specifies

and retrieves many records in a single statement. This statement is

known as query. The portion of a DML that involves information

retrieval is known as query language. The following are the some

of the example of SQL for DML

 12

 SELECT - extracts data from a database

 UPDATE - updates data in a database

 DELETE - deletes data from a database

 INSERT INTO - inserts new data into a database

S.A.Q. What metadata?

Summary

1. Data independence is defined as the capacity to change the schema at

 one level of database system without affecting the schema in the next

 higher level.

2. The person who has the central control in defining the data and to

 write programs and to access the data in database is known DBA.

3. A database system provides two different types of languages. DDL

 and DML.

4. What data are needed and how to get those data is known as

 procedural DML and what data are needed without specify how to get

 those data is known as non-procedural DML.

I. Answer the following questions (10 marks)

1. Write short notes on DBA.

2. Write short notes on Architecture of DBMS.

3. Write short notes on Data base languages.

 13

II. Answer the following questions (5 marks)

1. Define DDL.

2. Define DML.

3. What is data independence?

4. What is the architecture of DBMS?

III. Answer the following questions (1 mark)

1. The ________ defines authorized users to access the database

(database administrator (DBA)).

2. ____________ is a collection of interrelated data and set of programs

to access those data. (DBMS).

3. _____ and ______ are two different types of database languages.

(DDL , DML).

4. The architecture of database system is viewed as ______

level(schema) architecture. (three)

5. _______________ means information appear4s in different files in

different formats. (Data

redundancy)

 14

 Unit – II

Database models

 15

Chapter – I Data models

Structure

2.0. Objective

2.1. Introduction

2.2. Data models

 2.2.1. Relational data model

 2.2.2. Network model

 2.2.3. Hierarchical model

The objective of this unit is to handle with different data models in database.

In this chapter we deal with data models like relational, network, hierarchical

models.

Underlying the structure of a database is the data model. A model is a

collection of conceptual tools for describing data, data relationships, data

semantics, and consistency constraints. The various data models that have

been proposed fall into three different groups.

1. Object based logical models

2. Record based logical models and

3. physical model

2.0. Objective

2.1. Introduction

2.2. Data model

 16

1. Object based logical model: Object based logical models are used in

describing data at the logical and view levels. They are characterized by the

fact that they provide fairly flexible structuring capabilities and allow data

constraints to be specified explicitly. There are many different models.

Several of the widely known ones are

1. The Entity relationship model

2. The Object-Oriented model

3. The Semantic data model

4. The Functional Data model

3. Record based logical models: Record based logical models are

used in describing data at the logical and view levels. In contrast to

object based data models, they are used both to specify the overall

logical structure of the database and to provide a higher-level description

of the implementation. The database is structured in fixed-format

records of several types. Each record type defines a fixed number of

fields, or attributes, and each field is usually of a fixed length. The three

most widely accepted record-based data models are the relational,

network, and hierarchical model.

2.2.1. Relational model: A database based on the relational model developed

by E.F. Codd. A relational database allows the definition of data structures,

storage and retrieval operations and integrity constraints. In such a database

the data and relations between them are organized in tables. A table is a

collection of records and each record in a table contains the same fields.

Properties of Relational Tables

 Values Are Atomic

 Each Row is Unique

 Column Values Are of the Same Kind

 The Sequence of Columns is Insignificant

 The Sequence of Rows is Insignificant

 17

 Each Column Has a Unique Name

The following is an example for relational model

 Customer table account table

In the above example name, street, city, number are the columns for customer

table and name, balance are columns for account table.

2.2.2. The Network Model: Data are represented by collections of records.

Relationships among data are represented by links. Organization is that of an

arbitrary graph. The following is an example for network database that is the

equivalent of the relational database.

In the above example network model is an example for customer and account

tables

2.2.3. The Hierarchical Model: Similar to the network model. Organization

of the records is as a collection of trees, rather than arbitrary graphs.

Hierarchical database that is the equivalent of the relational database.

 18

The relational model does not use pointers or links, but relates records by the

values they contain. This allows a formal mathematical foundation to be

defined.

4. Physical data model: Physical data models are used to

describe data at lowest level. In contrast to logical data models, there

are few physical data models in use. Two of the widely known ones are

the unifying model and the frame-memory model.

Summary

1. Data models are of three types object based logical model, record based

logical model, and physical mode.

2. Object based logical models are used in describing data at the logical and

view levels.

3. Object based logical mode again divided in the entity relationship model,

the object-oriented model, the semantic data model, the functional data model.

4. Record based logical model are used in describing data at the logical and

view levels and they are used both to specify the overall logical structure of

the database.

5. In this model database structure in fixed-format records of several types.

 19

6. Each record type defines a fixed number of fields, or attributes.

7. This model is further divided into relational model, network model and

hierarchical model.

8. Physical data models are used to describe data at the lowest level.

I. Answer the following questions (10 marks)

1. Explain data modes.

2. Write short notes on Record based logical models.

3. Write short notes on Relation model.

4. Write short notes on Network model.

5. Write short notes on Hierarchical model.

II. Answer the following questions (5 marks)

1. What is Relation model?

2. What is Network model?

3. What is Hierarchical model?

III. Answer the following questions (1 mark)

1. A ______ is collection of conceptual tools for describing data, data
 relationships, data semantics, and consistency constraints. (model)

2. The entity-relationship model falls under ____________ data model.
 (Object based logical model)

3. The ____________ does not use pointers or links to relate records.
 (relational model)

4. Record – based data model is divided into _________, _______________,

 and __________ (Relational, Network, and hierarchical model)

5. The semantic data model is example for ___________ model. (Object

 based logical model)

 20

 21

Structure

2.0. Objective
2.1. Introduction

2.2. Entity Relationship model

2.3. E-R model

 2.3.1. ER diagram

2.0. Objective

The aim of this unit is to understand Entity-Relationship model.

E-R model is falls under Object – based Logical Model which is a category of

Data Model. In this chapter we study about what is E-R model and E-R

diagrams how to implement.

2.1. Entity relationship model: E-R model is a data model that describes data

as entities, relationships and attributes.

2.2. E-R model: The E-R (entity-relationship) data model views the real

world as a set of basic objects (entities) and relationships among these objects.

It is intended primarily for the DB design process by allowing the

specification of an enterprise scheme. This represents the overall logical

structure of the DB.

Entity: An entity is an object that exists and it is distinguishable from other

objects. A distinction is accomplished by a set of attributes, which describe

entity. A relationship is association among several entities. The relationship

between two entity sets can be classified according to number of entities in

one entity set that are associated with number of entities in another entity set.

Chapter – II E-R model

2.1. Introduction

 22

Entity set: It is a set of Entities of same type. Rectangle is used to represent

the Entity.

Weak Entity set: An entity set which doesn’t have sufficient number of

attributes to form a primary key is termed as weak entity set. It is represented

with double lined rectangle.

Strong entity: An entity set which has which has a primary key is known as

strong entity set.

Attributes: The properties of entities are called attributes. There are different

types of attributes in the entity. For example, ROLL NO is a property of

entity STUDENT. An attribute instance is a particular property of an

individual entity instance. A key property uniquely identifies an entity

instance .In the example below; a particular student can be uniquely identified

from the roll number rather than the name. It is possible for more than one

student to have the same number, but a roll number is never duplicated. A

relationship can also have attributes. Ellipses are used to represent the

attribute. There are seven types of attributes.

1. Simple or atomic attributes: An attribute which can be further divided

into simple or atomic attributes.

 23

2. Composite attributes: An attribute which can be further divided into

simple attribute is called composite attribute.

3. Single value attribute: Attributes that have single value for a particular

entity is called single value attribute.

4. Multi Value Attribute: Attribute that can have set of values for a

particular entity are called multi value attributes.

5. Key attribute: An attribute which contains primary key is called key

attribute.

6. Null attribute: An attribute which doesn’t have any value is called null

attribute. Key attribute doesn’t allow null values.

7. Derived attribute: An attribute which derives the value for other related

attributes is known as derived attribute. For example, an employee's monthly

salary is based on the employee's annual salary.

2.2.1. E-R diagram: The overall logical structure of database can be

expressed graphically by the E-R diagram, which consists of following

components.

 Rectangles representing entity sets.

 24

 Ellipses representing attributes.

 Diamonds representing relationship sets.

 Lines linking attribute to entity sets and entity sets to relationship sets.

 Double ellipses which represent multi valued attributes.

 Dashed ellipses which represent derived attributes.

 Double lines which represent total participation of an

entity in a relationship set.

 25

1. S.A.Q. Draw a E-R diagram for teacher and student data with

attributes

T_NO, T_NAME, DEPT_NAME AND S_NO, S_NAME, SUBJECT with

relation TEACH.

Relationship set: Relationship set is a set of relations of some type if E1, E2,

E3, .En are entity sets then relationships set R C {e1, e2, e3, …, en} where

(e1, e2, e3, …, en) are relationships.

Types of relationships: There are four types of relationships in DBMS which

are as follows

 26

1. One to one: An entity in A is associated with only one entity in

another entity set B and Vice Versa. This is called as one to one

relationship.

2. One to many: An entity in A is associated with number of

entities in B and an entity in B is associated with only one entity in A.

This is known as one to many relationships.

3. Many to many: An entity in A is associated with any number of

entities in B and an entity in B is associated with any number of

entities in A. This is known as many to many relationships.

4. Many to one: An entity in A is associated with at-most one

number of entities in B is associated with any number of entities in A.

The following are the lines which is used to represent different relationships

diagrammatically.

Specialization: It is a process of defining a set of sub classes of an entity type.

This entity type is known as super class or higher level entity set. The sub

classes are known as lower level entity set. In specialization the division of

sub classes is defined on the basis of same distinguishing characteristics of

entities in the super class. The refinement process follows top down approach

 27

in deriving lower level entity sets. The entities of sub class may have

attributes that are not shared by the entities of super class. In E-R diagram

specialization is shown by ‘ ‘ triangle symbol and is labeled as ‘Is A’() .

The triangle with ‘Is’ a refers as relationship between super class and sub

class.

Consider the following example. Consider the entity set ‘account’ in banking

enterprise

The entity account has attributes accno and bal. Account is divided into two

lower level entity sets savings_acc and current_acc respectively. Savings_acc

entity has special attribute, interest_rate. Checking_acc hav over_draft

attribute. Also both entity sets in common.

Generalization: The design process may also proceed in a bottom-up manner,

in which multiple entity sets are synthesized into a higher-level entity set on

the basis of common features. The database designer may have first identified

a customer entity set with the attributes name, street, city, and customer-id,

and an employee entity set with the attributes name, street, city, employee-id,

and salary. There are similarities between the customer entity set and the

employee entity set in the sense that they have several attributes in common.

This commonality can be expressed by generalization, which is a containment

relationship that exists between a higher-level entity set and one or more

lower-level entity sets. In our example, person is the higher-level entity set

and customer and employee are lower-level entity sets.

Higher- and lower-level entity sets also may be designated by the terms super

class and subclass, respectively. The person entity set is the super class of the

customer and employee subclasses. For all practical purposes, generalization

is a simple inversion of specialization. We will apply both processes, in

combination, in the course of designing the E-R schema for an enterprise. In

terms of the E-R diagram itself, we do not distinguish between specialization

and generalization. New levels of entity representation will be distinguished

(specialization) or synthesized (generalization) as the design schema comes to

express fully the database application and the user requirements of the

 28

database. Differences in the two approaches may be characterized by their

starting point and overall goal. Generalization proceeds from the recognition

that a number of entity sets share some common features (namely, they are

described by the same attributes and participate in the same relationship

sets).

Aggregation:

Aggregation is an abstraction in which relationship sets (along with their

associated entity sets) are treated as higher-level entity sets, and can

participate in relationships.

 29

Summary

1. E-R model used to describes data as entities, relationships and attributes.

2. An entity is an object that exists and it is distinguishable from other objects

 3. A relationship is association among several entities.

4. Attribute is the property of an entity.

5. Attributes are of seven types.

6. An entity set which doesn’t have sufficient number of attributes to

 form a primary key is termed as weak entity set.

7. One-to-one, one-to-many, many-to-one, many-to-many are the four

 types of relationships.

8. Specialization is a process of defining a set of sub classes of an entity

 type.

9. Generalization is reverse process of specialization. It processed in

 bottom up manner.

10. Aggregation is the process of providing relationship between

 relationships.

 30

I. Answer the following questions (10 marks)

1. Write short notes on E-R model.

2. Write short notes on attributes.

3. Write short notes on relationship

II. Answer the following questions (5 marks)

1. Define Aggregation

2. Define Specialization.

3. Define Generalization.

4. What is E-R model?

5. What is E-R diagram?

III. Answer the following questions (1 mark)

1. ____________ are functions that take a collection of values as input and

 return a single value.(Aggregate functions)

2. Entity sets in E – R diagram are represented as _________. (rectangles)

3. Attributes in E – R diagram are represented as _________. (Ellipses)

4. A _________ key is a column in the table whose purpose is to uniquely

 identify records from the same table. (Primary key)

5. A __________ key is used to store values of another table’s primary key to

describe the relationship between data from different tables. (Foreign key)

 31

Unit – III

Data base design

 32

Structure

3.0. Objective

3.1. Introduction

3.2. Database Design

3.2.1. Normalization

3.2.2. 1NF

3.2.3. 2NF

3.2.4. 3NF

3.2.5. BCNF

The objective of this chapter is to design data base.

Data base is designed based on Normalization that consists of 1NF, 2NF, 3NF

and BCNF

3.2. Database Design: A carefully thought-out database design forms the

foundation for future success. These links will help you plan your database

designs to maintain performance and integrity through future growth.

3.2. Normalization: Normalization is the process of efficiently organizing

data in a database. There are two goals of the normalization process:

eliminating redundant data (for example, storing the same data in more than

one table) and ensuring data dependencies make sense (only storing related

data in a table). Both of these are worthy goals as they reduce the amount of

space a database consumes and ensure that data is logically stored.

Chapter – I Normalization

3.0. Objective

3.1. Introduction

 33

Normal Forms

The database community has developed a series of guidelines for ensuring

that databases are normalized. These are referred to as normal forms and are

numbered from one (the lowest form of normalization, referred to as first

normal form or 1NF) through five (fifth normal form or 5NF). In practical

applications, you'll often see 1NF, 2NF, and 3NF along with the occasional

4NF. But in our syllabus we deal with 1NF, 2NF, and 3NF and BCNF.

3.2.1. 1NF or first normalization: A relation is said to be in First Normal

Form (1NF) if and only if each attribute of the relation is atomic. More

simply, to be in 1NF, each column must contain only a single value and

each row must contain the same columns.

Example:

The following table is in first normal form (1NF/1ST):

Project_Name (primary key field when combined with Employee_Name)

Employee_Name Emp_Hire_Date Project_Manager

Problems With Data Stored in 1NF

Data duplication: within the same project the project manager name will be

duplicated. If the manager is replaced then all records for that project will

need to be updated (cascade update related records). The result is more space

is used for each record and processing time is consumed checking updates and

performing updates. To add a project manager you should already have an

employee in the project.

3.2.2. 2NF or second normalization: A relation is said to be in Second

Normal Form (2NF) if and only in it satisfies following properties

a. the relation must be in 1NF

 34

b. Every non-key attribute is fully functional dependent on the

primary key of the relation.

Example:

Project_Name

Employee_Name

The two fields, together, create a unique record and are therefore the primary

key of the table.

 There are a few problems with this table, however. First, if we delete a

project we lose employee names unless they are a member of another project.

If the employee gets married and changes their last name then every

occurrence of the person's name will need to be updated. Similarly, if

someone decides to make a slight change to the project name then many

records may have to be updated.

3.2.3. 3NF or Third normalization: A relation is said to be in 3NF if it

satisfies following properties:

a. The relation must be in 2NF

b. the Non-key attribute is non transitively dependent on

primary key i.e., there is non-functional dependency between

non-key attribute.

Example:

Here is the classic employee table example:

Emp_SSN

Emp_Name

Street

City

 35

State

Zip

Here we have a transitive dependency between Zip field and City and State

fields - what ever that means. I guess it means they are a little dependent but

no big deal. Since a zip will tell you what state and what city an address is in.

Therefore, to make this table third normal form we need to split out city state

and zip fields into a table of their own and then just have the zip in the

employee table:

Emp_SSN

Emp_Name

Street

Zip

The zip tables is as follows:

Zip

City

State

The above two tables are now in third normal form.

3.2.4. Boyce-Codd Normal Form (BCNF)

 When a relation has more than one candidate key, anomalies

 may result even though the relation is in 3NF.

 3NF does not deal satisfactorily with the case of a relation with

 overlapping candidate keys

 I.e. composite candidate keys with at least one attribute in

 common.

 BCNF is based on the concept of a determinant.

 36

 A determinant is any attribute (simple or composite) on which

 some other attribute is fully functionally dependent.

 A relation is in BCNF is, and only if, every determinant is a

 candidate key.

Difference between BCNF and 3NF:

1. 3NF always tries for less join and dependency preservation

 properties. BCNF also tries for loss less join an dependency

 preservation properties.

2. In 3NF non-key attributes are non-transitively dependent on

 primary key. In BCNF all non-key attributes are dependent on

 super key

3. The design of 3NF may cause null valued attributes or

 repetition of attributes in some relation, thus it causes

 redundancy. In BCNF null value attributes or repetitions of

 attributes are not allowed and thus there is no problem of

 redundancy.

4. If a relation is in 3NF it need not be in BCNF. All BCNF

 relations are in 3NF.

Summary

1. Normalization is the process of efficiently organizing data in a

 database.

2. A relation is said to be in First Normal Form (1NF) if and only if each

 attribute of the relation is atomic.

3. A relation is said to be in Second Normal Form (2NF) if and only in it

 satisfies following properties

a. The relation must be in 1NF

 37

b. Every non-key attribute is fully functional dependent on the primary key of

 the relation.

4. A relation is said to be in 3NF if it satisfies following properties:

a. The relation must be in 2NF

b. The Non-key attribute is non transitively dependent on primary key i.e.,

 there is non-functional dependency between non-key attribute

I. Answer the following questions (10 marks)

1. Explain Normalization.

2. List difference BCNF and 3 NF.

II. Answer the following questions (5 marks)

1. What is normalization?

2. What 1NF, 2NF, 3NF, BCNF.

III. Answer the following questions (1 mark)

1. BCNF stands for _______ (Boycee-Codd Normal Form

2. RDBMS stands for ___________Relational Database Management System)

 38

Structure

3.0. Objective

3.1. Introduction

3.2. SQL

 3.2.1. Basic structure

 3.2.2. Aggregate functions

 3.2.3. Insert operation

 3.2.4. Deletes operation

 3.2.5. Updates operation

The objective of this Chapter is to learn SQL queries.

In this chapter we discuss structure of SQL, Aggregate functions,

Mathematical function, DDL and DML commands

 SQL stands for Structured Query Language

 SQL lets you access and manipulate databases

 SQL is an ANSI (American National Standards Institute) standard

 SQL is not case sensitive

What Can SQL do?

 SQL can execute queries against a database

Chapter –II SQL

3.0. Objective

3.1. Introduction

3.2. SQL

 39

 SQL can retrieve data from a database

 SQL can insert records in a database

 SQL can update records in a database

 SQL can delete records from a database

 SQL can create new databases

 SQL can create new tables in a database

 SQL can create stored procedures in a database

 SQL can create views in a database

 SQL can set permissions on tables, procedures, and views

Some database systems require a semicolon at the end of each SQL statement.

Semicolon is the standard way to separate each SQL statement in database

systems that allow more than one SQL statement to be executed in the same

call to the server.

We are using MS Access and SQL Server 2000 and we do not have to put a

semicolon after each SQL statement, but some database programs force you to

use it.

3.2.1. Basic structure

SQL DML and DDL

SQL can be divided into two parts: The Data Manipulation Language (DML)

and the Data Definition Language (DDL).

The query and update commands form the DML part of SQL:

 SELECT - extracts data from a database

 UPDATE - updates data in a database

 DELETE - deletes data from a database

 INSERT INTO - inserts new data into a database

 40

The DDL part of SQL permits database tables to be created or deleted. It also

define indexes (keys), specify links between tables, and impose constraints

between tables. The most important DDL statements in SQL are:

 CREATE DATABASE - creates a new database

 ALTER DATABASE - modifies a database

 CREATE TABLE - creates a new table

 ALTER TABLE - modifies a table

 DROP TABLE - deletes a table

 CREATE INDEX - creates an index (search key)

 DROP INDEX - deletes an index

Table creation

Tables are the most fundamental logical storage structures in the oracle

relational database. Tables cancan be viewed as two-dimensional arrays that

can contain a predetermined number of columns and multiple rows:

Before a table is created the following has to finalize:

1. The name of the table.

2. The number of columns in the table.

3. The name, data type and maximum length of each column of the table.

4. The column and table constraints.

Naming rules

1. The name must begin with an alphabet.

2. Digits and special characters, underscored (_),$ and # are allowed.

3. Maximum length is of 30 characters.

 41

4. It must not be a reserved word.

5. There should not be any other object with the same name in your account.

Syntax:

Create table tablename (columnname datatype(datasize), columnname

datatype(datasize), …. columnname datatype(datasize);

Example:

1. Create a table employee table with columns e_no, e_name, sal, deptno,

 doj.

SQL> create table employee(e_no number(4), e_name varchar2(20), sal

number(4,3),deptno number(3), doj date);

S.Q.A. 1. Create a student table with the required details.

 42

S.A.Q. 1. Create a patent table with the required details.

Describing table with is already created

The table can be described using SQL command describes abbreviated as

desc.

Syntax:

desc tablename;

Example

desc employee;

output:

Name Null Type

e_no

e_name

sal

deptno

doj

Not null

Number(4)

Varchar2(20)

Number(4,2)

Number(3)

date

 43

S.A.Q. Write a query to crate a table dept and describe that table

Integrity constraints

A constraint is a rule that restricts the data values for one or more columns in

a table.

Constraints are of two types.

1. Table constraints

2. Column constraints

Table constraint: A constraint given at the table level is called as table

constraint. It may refer to more that one column of the table. Primary dye

constraint used to define composite key is the example of table level

constraint.

S.A.Q. 1. Write a query to describe table employee.

 44

Column constraint: A constraint given at the column level is known as

column level constraint. It defines a rule for a single column. It cannot refer

to column other than the column at which it is defined.

1. Not null: The particular column with a not null value can never have a null

value.

2. Unique: cannot have two same values in a column. It enforces uniqueness

in the given column.

3. Primary key: A primary key is used to uniquely identify rows in the table.

There may be only one primary key in the table. It may consist of more than

one column. It is used to enforce uniqueness in the primary key. Oracle does

the following for the column that has primary key constraint.

 Creates a unique index to enforce uniquness.

 Define not null constraint to prevent null values.

Syntax for column constraint

Create table tablename (columnname datatype(datasize), columnname

datatype(datasize)constraintname constraint, …. columnname

datatype(datasize);

Example for column constraint

Create table std(s_no number(4), s_name varchar2(20), marks number(3) s_pk

primary key);

4. Check constraint: it is used to specify some condition of the column.

The condition may not be

 A reference to pseudo column sysdate.

 Sub query

 45

If it is given as column constraint it can refer only to current column. But if it
given as table constraint, it can refer to more than one column of the table.

Syntax

Check columnname condition .

Example:

Check balance>=1000 in the bank

where 1000 is the minimum balance required.

S.A.Q. Write a query to create a table patent that implement constraints.

3.2.2. Aggregate functions

. For example, the purchasing manager may not be interested in a listing of all

widget sales, but may simply want to know the number of widgets sold this

month. Fortunately, SQL provides aggregate functions to assist with the

summarization of large volumes of data.

The following are the useful aggregate functions:

 AVG() - Returns the average value

 COUNT() - Returns the number of rows

 MAX() - Returns the largest value

 MIN() - Returns the smallest value

 SUM() - Returns the sum

 46

OrderID FirstName LastName Quantity UnitPrice Continent

122 John Jacob 21 4.52 North America

923 Ralph Wiggum 192 3.99 North America

238 Ryan Johnson 87 4.49 Africa

829 Mary Smith 842 2.99 North America

824 Elizabeth Marks 48 3.48 Africa

753 James Linea 9 7.85 North America

942 Alan Jonas 638 3.29 Europe

Let's begin by taking a look at the SUM function. It is used within a SELECT

statement and, predictably, returns the summation of a series of values. If the

widget project manager wanted to know the total number of widgets sold to

date, we could use the following query:

SELECT SUM (Quantity) AS Total

FROM WidgetOrders

 47

Our results would appear as:

Total =1837

The AVG (average) function works in a similar manner to provide the

mathematical average of a series of values. Let's try a slightly more

complicated task this time. We'd like to find out the average dollar amount of

all orders placed on the North American continent. Note that we'll have to

multiply the Quantity column by the UnitPrice column to compute the dollar

amount of each order. Here's what our query will look like:

SELECT AVG(UnitPrice * Quantity) As AveragePrice

FROM WidgetOrders

WHERE Continent = “North America”

And the results:

AveragePrice =862.3075

SQL provides the COUNT function to retrieve the number of records in a

table that meet given criteria. We can use the COUNT(*) syntax alone to

retrieve the number of rows in a table. Alternatively, a WHERE clause can be

included to restrict the counting to specific records.

For example, suppose our Widgets product manager would like to know how

many orders our company processed that requested over 100 widgets.

Here's the SQL query:

SELECT COUNT(*) AS 'Number of Large Orders'

FROM WidgetOrders

WHERE Quantity > 100

 48

And the results:

Number of Large Orders

3

The COUNT function also allows for the use of the DISTINCT keyword and

an expression to count the number of times a unique value for the expression

appears in the target data. Similarly, the ALL keyword returns the total

number of times the expression is satisfied, without worrying about unique

values. For example, our product manager would like a simple query that

returned the number of unique continents in our orders database.

First, let's take a look at the use of the ALL keyword:

SELECT COUNT(ALL Continent) As 'Number of Continents'

FROM WidgetOrders

And the result set:

Number of Continents

7

Obviously, this is not the desired results. If you recall the contents of the

WidgetOrders table from the previous page, all of our orders came from North

America, Africa and Europe. Let's try the DISTINCT keyword instead:

SELECT COUNT(DISTINCT Continent) As 'Number of Continents'

FROM WidgetOrders

 49

And the output:

Number of Continents

3

In this final segment of our aggregate functions feature article, we'll look at

the functionality SQL provides to locate the records containing the smallest

and largest values for a given expression.

The MAX() function returns the largest value in a given data series. We can

provide the function with a field name to return the largest value for a given

field in a table. MAX() can also be used with expressions and GROUP BY

clauses for enhanced functionality.

Once again, we'll use the WidgetOrders example table for this query (see the

first page of this article for the specification and contents). Suppose our

product manager wanted to find the order in our database that produced the

most revenue for the company. We could use the following query to find the

order with the largest total dollar value:

SELECT MAX(Quantity * UnitPrice)As 'Largest Order'

FROM WidgetOrders

Our results would look like this:

Largest Order

2517.58

The MIN() function functions in the same manner, but returns the minimum

value for the expression. Let's try a slightly more complicated example

 50

utilizing the MIN() function. Our sales department is currently analyzing data

on small widget orders. They'd like us to retrieve information on the smallest

widget order placed on each continent. This requires the use of the MIN()

function on a computed value and a GROUP BY clause to summarize data by

continent.

Here's the SQL:

SELECT Continent, MIN(Quantity * UnitPrice) AS 'Smallest Order'

FROM WidgetOrders

GROUP BY Continent

And our result set:

Continent Smallest Order

------------- ---------------------

Africa 167.04

Europe 2099.02

North America 70.65

S.Q.A. Write a query to implement all aggregate function on emp table.

 51

3.2.3. Insert

 Appends a new record to the end of a table that contains the specified field

values. The INSERT SQL command has three syntaxes:

 Use the first syntax to insert specified values into specified

fields in a table.

 Use the second syntax to insert the contents of elements from

an array, memory variable, or property of an object that match the field

names in the table.

 Use the third syntax to insert rows from an SQL SELECT

command into the specified fields in the table.

INSERT INTO dbf_name [(FieldName1 [, FieldName2, ...])]

 VALUES (eExpression1 [, eExpression2, ...])

INSERT INTO dbf_name FROM ARRAY ArrayName | FROM MEMVAR |

FROM

NAME ObjectName

INSERT INTO dbf_name [(FieldName1 [, FieldName2, ...])]

 SELECT SELECTClauses [UNION UnionClause SELECT

SELECTClauses ...]

Parameters

INSERT INTO dbf_Name

Specifies the name of the table for appending a new record. dbf_Name

can include a path and can be a name expression.

[(FieldName1 [, FieldName2 [, ...]])]

Specifies the names of the fields in the new record into which the

values are inserted.

 52

VALUES (eExpression1 [, eExpression2 [, ...]])

Specifies the field values to be inserted into the new record. If you

omit the field names, you must specify the field values in the order

defined by the table structure. If eExpression is a field name, it must

include the table alias.

If SET NULL is ON, INSERT attempts to insert null values into any

fields not specified in the VALUES clause.

Guidelines for insert command

1. A table must be created before you insert the data.

2. Separate the values by commas.

3. Enclose the strings in single quotes ‘ ‘ .

4. Enter the values in specific sequence, which is sequence of the columns at

the time of creation of table.

5. Each value must match the data type of the particular column.

6. Date must be entered in the format dd-mmmm-yy.

7. If you don’t want to enter values for all the columns then specify the

column names.

S.A.Q. 1.write a query to insert values in the employee table.(at least

five row should be inserted)

 53

Select statement: Select command retrieves the rows from the tables. It

implements operators of relational algebra such as projections and selection.

The simplest select command contains the following:

if * is given, all the columns are selected.

The SELECT statement is used to select data from a database.

The result is stored in a result table, called the result-set.

SQL SELECT Syntax

SELECT column_name(s)

FROM table_name

and

SELECT * FROM table_name

An SQL SELECT Example

The "Persons" table:

P_Id LastName FirstName Address City

1 Hansen Ola Timoteivn 10 Sandnes

2 Svendson Tove Borgvn 23 Sandnes

3 Pettersen Kari Storgt 20 Stavanger

 54

Now we want to select the content of the columns named "LastName" and

"FirstName" from the table above.

We use the following SELECT statement:

SELECT LastName,FirstName FROM Persons

The result-set will look like this:

LastName FirstName

Hansen Ola

Svendson Tove

Pettersen Kari

SELECT * Example

Now we want to select all the columns from the "Persons" table.

We use the following SELECT statement:

SELECT * FROM Persons

Tip: The asterisk (*) is a quick way of selecting all columns!

The result-set will look like this:

P_Id LastName FirstName Address City

1 Hansen Ola Timoteivn 10 Sandnes

2 Svendson Tove Borgvn 23 Sandnes

3 Pettersen Kari Storgt 20 Stavanger

 55

3.2.3. Delete

The DELETE statement is used to delete records in a table.

The DELETE Statement

The DELETE statement is used to delete rows in a table.

SQL DELETE Syntax

DELETE FROM table_name

WHERE some_column=some_value

Note: Notice the WHERE clause in the DELETE syntax. The WHERE clause

specifies which record or records that should be deleted. If you omit the

WHERE clause, all records will be deleted!

S.A.Q. 1.write a query to select values in the employee table.

2. Write a query to select only address the above(person) table.

 56

SQL DELETE Example

The "Persons" table:

P_Id LastName FirstName Address City

1 Hansen Ola Timoteivn 10 Sandnes

2 Svendson Tove Borgvn 23 Sandnes

3 Pettersen Kari Storgt 20 Stavanger

4 Nilsen Johan Bakken 2 Stavanger

5 Tjessem Jakob Nissestien 67 Sandnes

Now we want to delete the person "Tjessem, Jakob" in the "Persons" table.

We use the following SQL statement:

DELETE FROM Persons

WHERE LastName='Tjessem' AND FirstName='Jakob'

The "Persons" table will now look like this:

P_Id LastName FirstName Address City

1 Hansen Ola Timoteivn 10 Sandnes

2 Svendson Tove Borgvn 23 Sandnes

3 Pettersen Kari Storgt 20 Stavanger

4 Nilsen Johan Bakken 2 Stavanger

Delete All Rows

It is possible to delete all rows in a table without deleting the table. This

means that the table structure, attributes, and indexes will be intact:

 57

DELETE FROM table_name

or

DELETE * FROM table_name

3.2.5. Updates:

The UPDATE statement is used to update records in a table.

The UPDATE Statement

The UPDATE statement is used to update existing records in a table.

SQL UPDATE Syntax

UPDATE table_name

SET column1=value, column2=value2,...

WHERE some_column=some_value

Note: Notice the WHERE clause in the UPDATE syntax. The WHERE clause

specifies which record or records that should be updated. If you omit the

WHERE clause, all records will be updated!

S.A.Q. 1. Write a query to delete all rows in employee table.

 58

SQL UPDATE Example

The "Persons" table:

P_Id LastName FirstName Address City

1 Hansen Ola Timoteivn 10 Sandnes

2 Svendson Tove Borgvn 23 Sandnes

3 Pettersen Kari Storgt 20 Stavanger

4 Nilsen Johan Bakken 2 Stavanger

5 Tjessem Jakob

Now we want to update the person "Tjessem, Jakob" in the "Persons" table.

We use the following SQL statement:

UPDATE Persons

SET Address='Nissestien 67', City='Sandnes'

WHERE LastName='Tjessem' AND FirstName='Jakob'

The "Persons" table will now look like this:

P_Id
LastName FirstName Address City

1 Hansen Ola Timoteivn 10 Sandnes

2 Svendson Tove Borgvn 23 Sandnes

3 Pettersen Kari Storgt 20 Stavanger

4
Nilsen Johan Bakken 2 Stavanger

5
Tjessem Jakob Nissestien 67 Sandnes

 59

SQL UPDATE Warning

Be careful when updating records. If we had omitted the WHERE clause in

the example above, like this:

UPDATE Persons

SET Address='Nissestien 67', City='Sandnes'

The "Persons" table would have looked like this:

P_Id LastName FirstName Address City

1 Hansen Ola Nissestien 67 Sandnes

2 Svendson Tove Nissestien 67 Sandnes

3 Pettersen Kari Nissestien 67 Sandnes

4 Nilsen Johan Nissestien 67 Sandnes

5 Tjessem Jakob Nissestien 67 Sandnes

S.A.Q. 1. Write a query to update person table with column pin and

also row to implement.

 60

ALTER TABLE Statement

The ALTER TABLE statement is used to add, delete, or modify columns in
an existing table.

ALTER TABLE Syntax

To add a column in a table, use the following syntax:

ALTER TABLE table_name
ADD column_name datatype

To delete a column in a table, use the following syntax (notice that some
database systems don't allow deleting a column):

ALTER TABLE table_name
DROP COLUMN column_name

To change the data type of a column in a table, use the following syntax:

ALTER TABLE table_name
ALTER COLUMN column_name datatype

ALTER TABLE Example

Look at the "Persons" table:

P_Id LastName FirstName Address City
1 Hansen Ola Timoteivn 10 Sandnes
2 Svendson Tove Borgvn 23 Sandnes
3 Pettersen Kari Storgt 20 Stavanger

Now we want to add a column named "DateOfBirth" in the "Persons" table.

We use the following SQL statement:

ALTER TABLE Persons
ADD DateOfBirth date

Notice that the new column, "DateOfBirth", is of type date and is going to
hold a date. The data type specifies what type of data the column can hold.
For a complete reference of all the data types available in MS Access,
MySQL, and SQL Server, go to our complete Data Types reference.

 61

The "Persons" table will now like this:

P_Id LastName FirstName Address City DateOfBirth
1 Hansen Ola Timoteivn 10 Sandnes
2 Svendson Tove Borgvn 23 Sandnes
3 Pettersen Kari Storgt 20 Stavanger

LIKE Operator

The LIKE operator is used in a WHERE clause to search for a specified
pattern in a column.

The LIKE Operator

The LIKE operator is used to search for a specified pattern in a column.

SQL LIKE Syntax

SELECT column_name(s)
FROM table_name
WHERE column_name LIKE pattern

LIKE Operator Example

The "Persons" table:

P_Id LastName FirstName Address City

1 Hansen Ola Timoteivn 10 Sandnes

2 Svendson Tove Borgvn 23 Sandnes

3 Pettersen Kari Storgt 20 Stavanger

Now we want to select the persons living in a city that starts with "s" from the
table above.

We use the following SELECT statement:

SELECT * FROM Persons
WHERE City LIKE 's%'

 62

The "%" sign can be used to define wildcards (missing letters in the
pattern) both before and after the pattern.

The result-set will look like this:

P_Id LastName FirstName Address City

1 Hansen Ola Timoteivn 10 Sandnes

2 Svendson Tove Borgvn 23 Sandnes

3 Pettersen Kari Storgt 20 Stavanger

Next, we want to select the persons living in a city that ends with an "s" from
the "Persons" table.

We use the following SELECT statement:

SELECT * FROM Persons
WHERE City LIKE '%s'

The result-set will look like this:

P_Id LastName FirstName Address City

1 Hansen Ola Timoteivn 10 Sandnes

2 Svendson Tove Borgvn 23 Sandnes

Next, we want to select the persons living in a city that contains the pattern
"tav" from the "Persons" table.

We use the following SELECT statement:

The result-set will look like this:

P_Id LastName FirstName Address City

3 Pettersen Kari Storgt 20 Stavanger

SELECT * FROM Persons
WHERE City LIKE '%tav%'

 63

It is also possible to select the persons living in a city that NOT contains the
pattern "tav" from the "Persons" table, by using the NOT keyword.

We use the following SELECT statement:

SELECT * FROM Persons
WHERE City NOT LIKE '%tav%'

The result-set will look like this:

P_Id LastName FirstName Address City

1 Hansen Ola Timoteivn 10 Sandnes

2 Svendson Tove Borgvn 23 Sandnes

Summary

1. In order to access the database, first database is to be started in many

installations users are not concerned with either starting or shutting down

database. It is taken care of by DBA. SQL*Plus is a program. Written by

oracle corporation, using which user can enter SQL and SQL*Plus commands.

2. Create table is a DDL command to create a table definition DML command

insert is used to add rows to a table. Select command is used to retrieve rows

from the table.

I. Answer the following questions (10 marks)

1. Write short notes SQL queries.

2. Write short notes on create query with suitable example.

3. Write short notes on insert query with suitable example.

4. Write short notes on aggregate functions.

5. Write short notes on delete, update queries.

6. Write short notes on Alter query.

7. Write short notes on Update query.

 64

II. Answer the following questions (5 marks)

1. What is SQL?

2. What are different DDL and DML statements?

3. What is the difference between delete table and drop table?

4. What is the difference between select and desc queries.

5. What is like query?

III. Answer the following questions (1 mark)

1. ______ command is used to display definition of a table. (desc)

2. SQL stands for _______ (Structure Query Language)

3. _________ functions are functions that take a collection of values a sinput

 and return a single value. (Aggregate functions)

 65

Structure

3.0. Objective

3.1. Introduction

3.2. Mathematical functions

The aim of this chapter is to know about SQL mathematical functions

In this chapter we discuss mathematical functions such as like, upper, lower,

round, trunc, initcap, etc.

3.2. Mathematical functions

UCASE() Function

The UCASE() Function
The UCASE() function converts the value of a field to uppercase.
SQL UCASE() Syntax

SELECT UCASE(column_name) FROM table_name

SQL UCASE() Example
We have the following "Persons" table:

P_Id LastName FirstName Address City
1 Hansen Ola Timoteivn 10 Sandnes
2 Svendson Tove Borgvn 23 Sandnes
3 Pettersen Kari Storgt 20 Stavanger

Chapter – III SQL Mathematical functions

3.0. Objective

3.1. Introduction

 66

Now we want to select the content of the "LastName" and "FirstName"
columns above, and convert the "LastName" column to uppercase.
We use the following SELECT statement:

SELECT UCASE(LastName) as LastName,FirstName FROM Persons

The result-set will look like this:

LastName FirstName
HANSEN Ola
SVENDSON Tove
PETTERSEN Kari

LCASE() Function

The LCASE() Function
The LCASE() function converts the value of a field to lowercase.
SQL LCASE() Syntax

SELECT LCASE(column_name) FROM table_name

SQL LCASE() Example
We have the following "Persons" table:

P_Id LastName FirstName Address City
1 Hansen Ola Timoteivn 10 Sandnes
2 Svendson Tove Borgvn 23 Sandnes
3 Pettersen Kari Storgt 20 Stavanger

Now we want to select the content of the "LastName" and "FirstName"
columns above, and convert the "LastName" column to lowercase.
We use the following SELECT statement:

SELECT LCASE(LastName) as LastName,FirstName FROM Persons

The result-set will look like this:
LastName FirstName
hansen Ola
svendson Tove
pettersen Kari

 67

MID() Function
The MID() Function
The MID() function is used to extract characters from a text field.
SQL MID() Syntax

SELECT MID(column_name,start[,length]) FROM table_name

Parameter Description
column_name Required. The field to extract characters from.
start Required. Specifies the starting position (starts at 1).
length Optional. The number of characters to return. If omitted, the

MID() function returns the rest of the text.

SQL MID() Example
We have the following "Persons" table:

P_Id LastName FirstName Address City
1 Hansen Ola Timoteivn 10 Sandnes
2 Svendson Tove Borgvn 23 Sandnes
3 Pettersen Kari Storgt 20 Stavanger

Now we want to extract the first four characters of the "City" column above.
We use the following SELECT statement:

SELECT MID(City,1,4) as SmallCity FROM Persons

The result-set will look like this:

SmallCity
Sand
Sand
Stav

LEN() Function

The LEN() Function
The LEN() function returns the length of the value in a text field.
SQL LEN() Syntax

SELECT LEN(column_name) FROM table_name

SQL LEN() Example

 68

We have the following "Persons" table:

P_Id LastName FirstName Address City
1 Hansen Ola Timoteivn 10 Sandnes
2 Svendson Tove Borgvn 23 Sandnes
3 Pettersen Kari Storgt 20 Stavanger

Now we want to select the length of the values in the "Address" column
above.
We use the following SELECT statement:

SELECT LEN(Address) as LengthOfAddress FROM Persons

The result-set will look like this:

LengthOfAddress
12
9
9

ROUND() Function

The ROUND() Function
The ROUND() function is used to round a numeric field to the number of
decimals specified.
SQL ROUND() Syntax

SELECT ROUND(column_name,decimals) FROM table_name

Parameter Description
column_name Required. The field to round.
decimals Required. Specifies the number of decimals to be returned.

SQL ROUND() Example

We have the following "Products" table:

Prod_Id ProductName Unit UnitPrice
1 Jarlsberg 1000 g 10.45
2 Mascarpone 1000 g 32.56
3 Gorgonzola 1000 g 15.67

 69

Now we want to display the product name and the price rounded to the nearest
integer.
We use the following SELECT statement:

SELECT ProductName, ROUND(UnitPrice,0) as UnitPrice FROM Persons

The result-set will look like this:

ProductName UnitPrice
Jarlsberg 10
Mascarpone 33
Gorgonzola 16

NOW() Function

The NOW() Function
The NOW() function returns the current system date and time.
SQL NOW() Syntax

SELECT NOW() FROM table_name

SQL NOW() Example
We have the following "Products" table:

Prod_Id ProductName Unit UnitPrice
1 Jarlsberg 1000 g 10.45
2 Mascarpone 1000 g 32.56
3 Gorgonzola 1000 g 15.67

Now we want to display the products and prices per today's date.
We use the following SELECT statement:

SELECT ProductName, UnitPrice, Now() as PerDate FROM Persons

The result-set will look like this:

ProductName UnitPrice PerDate
Jarlsberg 10.45 10/7/2008 11:25:02 AM
Mascarpone 32.56 10/7/2008 11:25:02 AM
Gorgonzola 15.67 10/7/2008 11:25:02 AM
FORMAT() Function

The FORMAT() Function

 70

The FORMAT() function is used to format how a field is to be displayed.
SQL FORMAT() Syntax

SELECT FORMAT(column_name,format) FROM table_name

Parameter Description
column_name Required. The field to be formatted.
format Required. Specifies the format.

SQL FORMAT() Example
We have the following "Products" table:

Prod_Id ProductName Unit UnitPrice
1 Jarlsberg 1000 g 10.45
2 Mascarpone 1000 g 32.56
3 Gorgonzola 1000 g 15.67

Now we want to display the products and prices per today's date (with today's
date displayed in the following format "YYYY-MM-DD").
We use the following SELECT statement:

SELECT ProductName, UnitPrice, FORMAT(Now(),'YYYY-MM-DD') as
PerDate
FROM Persons

The result-set will look like this:

ProductName UnitPrice PerDate
Jarlsberg 10.45 2008-10-07
Mascarpone 32.56 2008-10-07
Gorgonzola 15.67 2008-10-07

Summary

1. In order to access the database, first database is to be started in many

installations users are not concerned with either starting or shutting down

database. It is taken care of by DBA. SQL*Plus is a program. Written by

oracle corporation, using which user can enter SQL and SQL*Plus commands.

 71

2. Create table is a DDL command to create a table definition DML command

insert is used to add rows to a table. Select command is used to retrieve rows

from the table.

I. Answer the following questions (10 marks)

1. Write short notes SQL queries.

2. Write short notes on create query with suitable example.

3. Write short notes on insert query with suitable example.

4. Write short notes on aggregate functions.

5. Write short notes on delete, update queries.

6. Write short notes on Alter query.

7. Write short notes on Update query.

II. Answer the following questions (5 marks)

1. What is SQL?

2. What are different DDL and DML statements?

3. What is the difference between delete table and drop table?

4. What is the difference between select and desc queries.

5. What is like query?

III. Answer the following questions (1 mark)

1. ______ command is used to display definition of a table. (desc)

2. SQL stands for _______ (Structure Query Language)

3. _________ functions are functions that take a collection of values a sinput

and return a single value. (Aggregate functions)

.

