
eE
Sastri/ B.A 2nd Year

Course/Paper.2

CENTER OF DISTANCE & ONLINE EDUCATION

(Formerly Directorate of Distance Education)

NATIONAL SANSKRIT UNIVERSITY :: TIRUPATI-517 507 (A.P)
(Erstwhile Rashtriya Sanskrit Vidyapeetha, Tirupati)

OBJECT ORIENTED PROGRAMMING WITH JAVA
&

WEB DESIGNING

Part-II, 2nd Elective
COMPUTER APPLICATIONS

.

1
`

UNIT – I FUNDAMENTAL OF OBJECT ORIENTED PROGRAMMING

Structure

1.0 Objectives
1.1 Introduction
 1.1.1. Object Oriented paradigm
 1.1.2. Basic concepts of Object Oriented programming
 1.1.3. Benefits of OOPs
 1.1.4. Applications of OOPs
1.2 Overview of Java Language
 1.2.1. Simple Java Program
 1.2.2. Java program structure
 1.2.3. Java tokens
 1.2.4. Java statements
 1.2.5. Implementing a Java programming
 1.2.6. Java Virtual Machine (JVM)
 1.2.7. Command Line Arguments
1.3 Variables and Data types
 1.3.1. Constants, Variables, Data types
 1.3.2. Declaration of Variables and giving values to variables
 1.3.3. Scope of variables
 1.3.4. Symbolic constants
 1.3.5. Type casting.
1.4 Summary
1.5 SAQ

1.0 Objective

The main objective of this unit is to make clear about basic of Objective Oriented Programming,
its benefits, applications. OOP for Java programming language, introduction to JVM, variables
and data types used in Java Language.

1.1 Introduction

OOPs stand for Object Oriented Programming, generally used as programming Language. Some

of the programming language that supports OOPs say C++, Java, Eiffel, small talk and soon.

Object Oriented is not only used in programming but also used as Object Oriented Software

Engineering (OOSE), Object Oriented Analysis (OOA), Object Oriented Testing (OOT), Object

Oriented Designing (OOD), Object Oriented Data Base Management System (OODBMS) and so

on.

2
`

In this unit we concentrate how OOP concept implemented in Java programming language. Java

is a high-level programming language originally developed by Sun Microsystems and released in

1995. Java runs on a variety of platforms, such as Windows, Mac OS, and the various versions of

UNIX. With the advancement of Java and its widespread popularity, multiple configurations

were built to suit various types of platforms. For example J2EE for Enterprise Applications,

J2ME for Mobile Applications.

The main advantage of Java is guaranteed to WIRTE ONCE, RUN ANYWHERE.

1.1.1. Object Oriented Paradigm

Object Oriented Programming (OOP) is a programming paradigm based upon objects and classes

that aims to incorporate the advantages of modularity and reusability. Objects, which are

instance of classes and Class is a single unit which consists of variables, constants and member

function.

The important features of object–oriented programming are

 Bottom–up approach in program design

 Programs organized around objects, grouped in classes

 Focus on data with methods to operate upon object’s data

 Interaction between objects through functions

 Reusability of design through creation of new classes by adding features to existing
classes

Fig1. Object = Data + Methods

Method Method

Method Method

Data

3
`

1.1.2. Basic concepts of OOPs

OOPs incorporate the concepts of Objects, Classes, Data Abstraction and Encapsulation,
Inheritance, Polymorphism, Dynamic Binding and Message Communication. Let us discuss each
of them in detail.

a) Objects: Objects are the basic runtime entities in an Object Oriented Systems. The
represent a person, place, a bank account, a table or any item that the program may
handle. When a program is executed, the objects interact by sending messages to one
another. For example ‘customer’ and ‘account’ are two objects in a banking program,
then the customer object ma send a message to the account object request for balance.
Each object contains data and code to manipulate the data.

Let us consider an example of dog, then its state is – name, breed, color, and the behavior
is barking, wagging the tail, running etc. software objects also have a state and a
behavior. A software object’s state is stored in fields and behavior is shown via methods.
We can say that software development, methods operate on the internal state of an object
and the object-to-object communication is done via methods. “Object is defined as
instance of class”.

b) Classes: Collection of objects is called class. It is a logical entity. A class can also be

defined as a blueprint from which you can create an individual object. Class doesn't

consume any space. The class is a group of similar entities. It is only a logical component

and not the physical entity. For example, if you had a class called “Expensive Cars” it

could have objects like Mercedes, BMW, Toyota, etc. Its properties (data) can be price or

speed of these cars. While the methods may be performed with these cars are driving,

reverse, braking etc.

c) Data Abstraction: An abstraction is an act of representing essential features without

including background details. It is a technique of creating a new data type that is suited

for a specific application. For example, while driving a car, you do not have to be

concerned with its internal working. Here you just need to concern about parts like

steering wheel, Gears, accelerator, etc.
d) Encapsulation: Encapsulation is an OOP technique of wrapping the data and code. In

this OOPS concept, the variables of a class are always hidden from other classes. It can

4
`

only be accessed using the methods of their current class. For example - in school, a

student cannot exist without a class.

e) Inheritance: Inheritance is the process by which objects of one class acquire the
properties of another class. It provides code reusability. This means that we can add

additional features to an existing class without modifying it. Heritance supports the

concept of hierarchical classification. It is used to achieve runtime polymorphism. For

example, the bird robin is part of the class flying bird, which is again a part of the

class bird. Consider the example given below

Inheritance property
Polymorphism: Polymorphism refers to the ability of a variable, object or function to take

on multiple forms. For example, in English, the verb run has a different meaning if you use it

with a laptop, a foot race, and business. Here, we understand the meaning of run based on the

other words used along with it. The same also applied to Polymorphism. Polymorphism plays

an important role in allowing objects having different internal structure share the same

Bird

Attributes:
feathers
lay eggs

Bird

Attributes:

Bird

Attributes:

Bird

Attributes:

Bird

Attributes:

Bird

Attributes:

Bird

Attributes:

5
`

external interface. This means that a general class of operations may be accessed in same

manner even though specific actions associated with each operation may differ.

Polymorphism extensively used in implementing inheritance.

In Java, we use method overloading and method overriding to achieve polymorphism.

Method overloading: Method Overloading is a feature that allows a class to have more than
one method having the same name, if their argument lists are different.

Method overriding: Method Overriding is a feature that allows a subclass or child class to
provide a specific implementation of a method that is already provided by one of its super-
classes or parent classes.

Polymorphism

f) Dynamic Binding: Binding refers to the linking of a procedure call to the code to be

executed in response to the call. Dynamic binding means that the code associated with a

given procedure call is not known until the time of the call at runtime. It is associated

with polymorphism and inheritance. A procedure associated with a polymorphic

reference depends on the dynamic type of that reference.

Let us consider the above “draw” example. By inheritance, every object will have this

procedure the algorithm is, however, unique to each object and so the draw procedure

will be redefined in each of that defines the object. At runtime, the code matching the

object under current reference will be called.

g) Message Communication: An object oriented program consists of a set of objects that

communicate with each other. The process of programming in an object oriented

language, therefore, involves the following basic steps:

 Shape

Draw()

 Shape

Draw()

 Shape

Draw()

 Shape

Draw()

6
`

 Creating classes that define objects and their behavior.

 Creating objects from class definitions.

 Establishing communication among objects

Objects communicate with one another by sending and receiving information much the same

way the people pass messages to one another as given below. The concept of message passing

making easier to talk about building systems that directly model or simulate their real world

counterparts.

Network of objects communicating between them

A message for an object is a request for executing of a procedure, and therefore will invoke the
method (procedure) in the receiving object that generates the required result.

Employee . salary (name) ;

Here in the above example employee.salary(name) --------- employee is object, salary is
message and name is information.

Object 1

Object 4

Object 5

Object 2

Object 3

7
`

1.1.3 Benefits of OOPs
OOPs offers several benefits to both program designer and the user. Object orientation

contribution to the solution of many problems associated with the development and quality of

software products. The new technology promises greater programmer productivity, better

quality of software and less maintenance cost. The principal advantages are:

1. Eliminate redundant code and extend the use of existing classes.

2. Programs can be build from the standard working modules that communicate with

one another and start writing the code from scratch. This shows to saving of

development time and higher productivity.

3. The data handling rules helps the programmer to make secure programs that

cannot be invaded by code in other parts of the program.

4. It has multiple objects to coexist without any interference.

5. It has map objects in the problem domain to those objects in the program.

6. Partition of work is easy in a project based on objects.

7. The data-centered design approaches capture more details of a model in an

implementable form.

8. Object oriented systems can be easily upgraded from small to large systems.

9. It is possible to easily manage software complexity.

1.1.4. Applications of Object Oriented Programming

Applications of OOP are beginning to gain importance in many areas. The most popular

application of Object Oriented Programming, has been in the area of user interface design such

as windows. There are hundreds of windowing systems developed using OOP techniques. Real

business systems are often much more complex and contain many more objects with complicated

attributes and methods. OOP is useful in this type of applications because it can simplify a

complex problem. The promising areas for application of OOP includes:

 Real-time systems: Real time systems Real time systems inherit complexities that makes

difficult to build them. Object-oriented techniques make it easier to handle those

complexities. These techniques present ways of dealing with these complexities by

8
`

providing an integrated framework which includes schedulability analysis and behavioral

specifications.

 Simulation and modeling: It’s difficult to model complex systems due to the varying

specification of variables. These are prevalent in medicine and in other areas of natural

science, such as ecology, zoology, and agronomic systems. Simulating complex systems

requires modelling and understanding interactions explicitly. Object-oriented

Programming provides an alternative approach for simplifying these complex modelling

systems.

 Object oriented databases: These databases try to maintain a direct correspondence

between the real-world and database objects in order to let the object retain their identity

and integrity. They can then be identified and operated upon.

 Hypertext, hypermedia and expert text: OOP also helps in laying out a framework for

Hypertext. Basically, hypertext is similar to regular text as it can be stored, searched, and

edited easily. The only difference is that hypertext is text with pointers to other text as

well. Hypermedia, on the other hand, is a superset of hypertext. Documents having

hypermedia, not only contain links to other pieces of text and information, but also to

numerous other forms of media, ranging from images to sound.

 AI and Expert systems: These are computer applications which are developed to solve

complex problems pertaining to a specific domain, which is at a level far beyond the

reach of a human brain.

It has the following characteristics:

 Reliable
 Highly responsive
 Understandable
 High-performance

 Neural networks and parallel programming: neural networks are developed in a

particular time interval to disperse the load of various networks. OOP simplifies the

entire process by simplifying the approximation and prediction ability of networks.

 Decision support and office automation systems: These include formal as well as

informal electronic systems primarily concerned with information sharing and

9
`

communication to and from people inside as well as outside the organization. Some

examples are:

 Email
 Word processing
 Web calendars
 Desktop publishing

 CIM/CAD/CAD System: OOP can also be used in manufacturing and design

applications as it allows people to reduce the effort involved. For instance, it can be used

while designing blueprints, flowcharts, etc. OOP makes it possible for the designers and

engineers to produce these flowcharts and blueprints accurately.

1.2 Over view of Java Language

Java is a programming language and computing platform first released by Sun Microsystems in
1995. Java has emerged as the object-oriented programming language of choice. Some of the
important concepts of Java include:

 A Java virtual machine (JVM), which provides the fundamental basis for platform
independence.

 Automated storage management techniques, such as garbage collection.

 Language syntax that is similar to that of the C language.

The result is a language that is object-oriented and efficient for application programming.

Java is a general purpose, Object Oriented Programming Language. We can develop two types of
Java programs:

 Stand-alone applications

 Web applets

They are implementd as shown in the below figure. Stand-alone applications are programs

wittern in Java to carry out certain tasks on a stand-alone local computer. In fact, Java can be

used to develop programs for all kinds of applicaion, which earlier, were developed using

languages like C and C++. Executing a stand-alone Java program involves two steps:

 Compiling source code into bytecode using javac compiler.

 Executing the bytecode program using java interpreter.

Applets are small Java programs developed for Internet applications. An applet located on a

distant computer(Server) can be downloaded via Internet and executed on a local

10
`

computer(Client) using a Java capable browser. Applets are embedded in an HTML(Hypertext

Markup Language) document and run inside a Web page, creating and running applets are more

complex than creating an application.

Stand alone programs can read and write files and perform certain operations that applets cannot

do. An applet can only run within a Web browser.

Overview of Java Language

1.2.1. Simple Java Program

The best way to learn a new language is to write a few simple example programs and execute
them. Let us start writing simple “hello”Java program

Example 1:

Class simple{

public static void main(String args[]) {

System.out.println(“Hello Java”);

Java
Interpreter

Java
source
code

Java enabled
Web Browser

Java complier

Out put output

11
`

}

}

Let us discuss the program line by line in detail.

Class declaration

The first line “class simple“ declares a class, which is an object orented construct. As stated
earlier, java is a true object oriented language and therefor, everything mus be place inside a
class. Class is a key word and declars that a new class definition follows. “Simple” is a Java
identifier that specifies the name of the class to be defined.

Opening braces

Every class definition in Java begins with an opening brace “{” and ends with a matching
closing brace “}” appearing in the last line in the example.

The main line

The third line

 public static void main(String args[])

defines a method named main. Conceptually, this is similar to the main() function in c/c++.
Every Java application program must include the main() method. This is the starting point for
the interpreter to begin the execution of the program. A Java application can have any number of
classes but only one of them must include a main method to initiate the execution.

Public: the key word public is an access specifier that declares the main method as uprotected
and therefore making it accessible to all other classes. This is similar to the c++ public modifier.

Static: next appears the keyword static which declares this method as one that belongs to the
entire class and not a part of any objects of the class. The main must always be declare as static
since the interpreter uses this method before any objects are created. More about static methods
and variables.

Void: the type modifier void states that the main method does not return any value.

String[] args : Java main method accepts a single argument of type String array. This is also
called as java command line arguments.

12
`

System.out.println A Java statement that prints the argument passed, into the System.out which

is generally stdout.

 System – is a final class in java.lang package. As per javadoc, “…Among the facilities

provided by the Systemclass are standard input, standard output, and error output

streams; access to externally defined properties and environment variables; a means of

loading files and libraries; and a utility method for quickly copying a portion of

an array…“

 out – is a static member field of System class and is of type PrintStream. Its access

specifiers are public final. This gets instantiated during startup and gets mapped with

standard output console of the host. This stream is open by itself immediately after its

instantiation and ready to accept data.

 println – is a method of PrintStream class. println prints the argument passed to the

standard console and a newline. There are multiple println methods with different

arguments (overloading). Every println makes a call to printmethod and adds a

newline. print calls write() and the story goes on like that.

In the above Example 1. System.out.println(“Hellow Java”); it prints “Hello Java” to the screen.
The println always appends a newline character to the end of the string. This means that any
subsequent output will start on a new line. Every Java statement must be ended with Semicolon.

NOTE: Once java program is written it should be run and complied. Let us learn how to run a
java program using command prompt

We use Java compiler javac to compile Java program and the Java interpreter java to run the
Java program

Steps to achieve our goal:
i. Create a folder
ii. Create a java class and write a java program
iii. Open command prompt
iv. Run the created Java program using command prompt

Let us see above steps in detail

i. create a folder

c:\java

13
`

ii. Create a java class and write a java program

Using Notepad or another text editor, create a Java file simple.java with the following text:

public class simple{

 public static void main(String[] args){

 System.out.println("Hello Java");

 }

}

Save your file as simple.java in C:\java

iii. Open command prompt

Open Command Prompt (Open Run (Windows+R) and type cmd)

iv Run the created Java program using command prompt

C:\users\admin> cd\

C:\java> dir

This makes C:\java the current directory.

C:\SoftwareTestingMaterial> set path=%path%;C:\Program Files\Java\jdk1.8.0_101\bin

(NOTE : use the JDK folder for the version installed on your system). This tells the system
where to find JDK programs.

C:\java> javac simple.java

This runs javac.exe, the compiler. You should see nothing but the next system prompt.

C:\java> java simple

This runs the Java interpreter. You should see the program output

14
`

OUTPUT: Hello Java

Note:
i. Java is case-sensitive! Check your Java text. Check the spelling and capitalization in the file
name and the class name and the simple command.

ii. In “Step iv”, we set the jdk path. It is possible to make the path setting permanent but you
have to be very careful because your system might crash in case of any mistake. Proceed with
extreme caution!

1.2.3. Java tokens

Java Tokens are the smallest individual building block or smallest unit of a Java program; the
Java compiler uses it for constructing expressions and statements. Java program is a collection of
different types of tokens, comments, and white spaces.When we write a program, we need
different important things. We require language tokens, white spaces, and formats.

There are various tokens used in Java:

i. Reserved Keywords

ii. Identifiers

iii. Literals

iv. Operators

15
`

v. Separators

White space is also considered as a token.

i. Reserved Keywords: Key words are words that have already been defined for Java

compiler. They have special meaning for the compiler. Java Keywords must be in your

information because you can not use them as a variable, class or a method name. You can't

use keyword as identifier in your Java programs, its reserved words in Java library and used

to perform an internal operation.

Abstract Assert boolean break

Byte Case catch char

Class Const continue default

Do Double else enum

Extends Final finally float

For Goto if implements

Import instanceof int interface

Long Native new package

Private protected public return

Short Static strictfp super

Switch synchronized this throw

16
`

Throws transient try void

Volatile While true false

Null

 true, false and null are not reserved words but cannot be used as identifiers, because it is

literals of built-in types.

ii. Identifier: A Java identifier is the symbolic name that a programmer gives to various
programming elements such as a variables method, class, array, etc.

iii. Literals: A literal is a constant value that can be classified as integer literals, string literals,
and boolean literals.

iv. Operators: Java operators are symbols that are used to perform mathematical or logical

manipulations. Java is rich with built-in operators. Operators are tokens that perform some

calculations when they are applied to variables. The following are the different operators

with suitable examples with Java program.

 Arithmetic operator: The way we calculate mathematical calculations, in the same way,

Java provides arithmetic operators for mathematical operations. It provides operators for

all necessary mathematical calculations. There are various arithmetic operators used in

Java:

Operator Meaning Work

+ Addition To add two operands.

- Subtraction To subtract two operands.

* Multiplication To multiply two operands.

17
`

/ Division To divide two operands.

% Modulus To get the area of the division of two operands.

 Unary arithmetic operator: In Java, unary arithmetic operators are used to increasing or

decreasing the value of an operand. Increment operator adds 1 to the value of a variable,

whereas the decrement operator decreases a value. Increment and decrement unary

operator works as follows:

Syntax:

val++;

val--;

These two operators have two forms: Postfix and Prefix. Both do increment or decrement in

appropriate variables. These two operators can be placed before or after of variables. When it is

placed before the variable, it is called prefix. And when it is placed after, it is called postfix.

Following example table, demonstrates the work of Increment and decrement operators with

postfix and prefix:

Example Description

val = a++; Store the value of "a" in "val" then increments.

val = a--; Store the value of "a" in "val" then decrements.

val = ++a; Increments "a" then store the new value of "a" in "val".

val = --a; Decrements "a" then store the new value of "a" in "val".

18
`

Example: Program to Show Unary operator

public class unaryop {

 public static void main(String[] args) {

 int r = 6;

 System.out.println("r=: " + r++);

 System.out.println("r=: " + r);

 int x = 6;

 System.out.println("x=: " + x--);

 System.out.println("x=: " + x);

 int y = 6;

 System.out.println("y=: " + ++y);

 int p = 6;

 System.out.println("p=: " + --p);

 }

}

Output:

r=: 6

r=: 7

x=: 6

x=: 5

y=: 7

p=: 5

19
`

 Relational operator: The Java Relational operators compare between operands and

determine the relationship between them.

There are six types of relational operators in Java, these are:

Operator Meaning

== Is equal to

!= Is not equal to

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

Example : Program to Show Relational operators

public class relatiop {

 public static void main(String[] args) {

 //Variables Definition and Initialization

 int num1 = 12, num2 = 4;

 //is equal to

 System.out.println("num1 == num2 = " + (num1 == num2));

 //is not equal to

20
`

 System.out.println("num1 != num2 = " + (num1 != num2));

 //Greater than

 System.out.println("num1 > num2 = " + (num1 > num2));

 //Less than

 System.out.println("num1 < num2 = " + (num1 < num2));

 //Greater than or equal to

 System.out.println("num1 >= num2 = " + (num1 >= num2));

 //Less than or equal to

 System.out.println("num1 <= num2 = " + (num1 <= num2));

 }

}

Output:

num1 == num2 = false

num1 != num2 = true

num1 > num2 = true

num1 < num2 = false

num1 >= num2 = true

num1 <= num2 = false

 Logical operators: The Java Logical Operators work on the Boolean operand. It's also
called Boolean logical operators. It operates on two Boolean values, which return
Boolean values as a result.

21
`

Operator Meaning Work

&& Logical
AND

If both operands are true then only "logical AND operator" evaluate true.

|| Logical
OR

The logical OR operator is only evaluated as true when one of its operands
evaluates true. If either or both expressions evaluate to true, then the result is
true.

! Logical
Not

Logical NOT is a Unary Operator, it operates on single operands. It reverses
the value of operands, if the value is true, then it gives false, and if it is false,
then it gives true.

Example: Program to Show Logical operator

public class logicalop {

 public static void main(String[] args) {

 //Variables Definition and Initialization

 boolean bool1 = true, bool2 = false;

 //Logical AND

 System.out.println("bool1 && bool2 = " + (bool1 && bool2));

 //Logical OR

 System.out.println("bool1 || bool2 = " + (bool1 | bool2));

 //Logical Not System.out.println("!(bool1 && bool2) = " + !(bool1 && bool2)); }

}

Output:

bool1 && bool2 = false

bool1 || bool2 = true

22
`

!(bool1 && bool2) = true

 Bitwise operators: The Java Bitwise Operators allow access and modification of a
particular bit inside a section of the data. It can be applied to integer types and bytes, and
cannot be applied to float and double.

Operator Meaning Work

& Binary AND
Operator

There are two types of AND operators in Java: the logical && and the
binary &. Binary & operator work very much the same as
logical && operators works, except it works with two bits instead of two
expressions. The "Binary AND operator" returns 1 if both operands are
equal to 1.

| Binary OR
Operator

Like "AND operators ", Java has two different "OR" operators: the
logical || and the binary |. Binary | Operator work similar to
logical || operators works, except it, works with two bits instead of two
expressions. The "Binary OR operator" returns 1 if one of its operands
evaluates as 1. if either or both operands evaluate to 1, the result is 1.

^ Binary XOR
Operator

It stands for "exclusive OR" and means "one or the other", but not both.
The "Binary XOR operator" returns 1 if and only if exactly one of its
operands is 1. If both operands are 1, or both are 0, then the result is 0.

~ Binary
Complement
Operator

<< Binary Left
Shift Operator

>> Binary Right
Shift Operator

>>> Shift right zero
fill operator

23
`

Example: Program to Show Bitwise operator

public class bitwiseop {

 public static void main(String[] args) {

 //Variables Definition and Initialization

 int num1 = 30, num2 = 6, num3 =0;

 //Bitwise AND

 System.out.println("num1 & num2 = " + (num1 & num2));

 //Bitwise OR

 System.out.println("num1 | num2 = " + (num1 | num2));

 //Bitwise XOR

 System.out.println("num1 ^ num2 = " + (num1 ^ num2));

 //Binary Complement Operator

 System.out.println("~num1 = " + ~num1);

 //Binary Left Shift Operator

 num3 = num1 << 2;

 System.out.println("num1 << 1 = " + num3);

 //Binary Right Shift Operator

 num3 = num1 >> 2;

 System.out.println("num1 >> 1 = " + num3);

 //Shift right zero fill operator

 num3 = num1 >>> 2;

 System.out.println("num1 >>> 1 = " + num3);

24
`

 }

}

Output:

num1 & num2 = 6

num1 | num2 = 30

num1 ^ num2 = 24

~num1 = -31

num1 << 1 = 120

num1 >> 1 = 7

num1 >>> 1 = 7

 Assignment operators: The Java Assignment Operators are used when you want to
assign a value to the expression. The assignment operator denoted by the single equal
sign =

In a Java assignment statement, any expression can be on the right side and the left side must be

a variable name. For example, this does not mean that "a" is equal to "b", instead, it means

assigning the value of 'b' to 'a'. It is as follows:

Syntax:

variable = expression;

Example:

int a = 6;

float b = 6.8F;

Java also has the facility of chain assignment operators, where we can specify a single value for

multiple variables.

25
`

Example: Program to Show Assignment operator

public class ChainAssign {

 public static void main(String args[]) {

 int a, b, c;

 a = b = c = 100; // set a, b, and c to 100

 System.out.println("a = " + a);

 System.out.println("b = " + b);

 System.out.println("c = " + c);

 }

}

Output:

a = 100

b = 100

c = 100

 Conditional operator: The Java Conditional Operator selects one of two expressions for

evaluation, which is based on the value of the first operands. It is also

called ternary operator because it takes three arguments. The conditional operator is used

to handling simple situations in a line.

Syntax:

expression1 ? expression2:expression3;

The above syntax means that if the value given in Expression1 is true, then Expression2 will be

evaluated; otherwise, expression3 will be evaluated.

26
`

Example:

val == 0 ? you are right:you are not right;

Example: Program to Show Conditional Operator Works

public class condiop {

 public static void main(String[] args) {

 String out;

 int a = 6, b = 12;

 out = a==b ? "Yes":"No";

 System.out.println("Ans: "+out);

 }

}

Output:

Ans: No

In the above example, the condition given in expression1 is false because the value of a is not

equal to the value of b.

 Instanceof operator: The Java instanceof Operator is used to determining whether this

object belongs to this particular (class or subclass or interface) or not. This operator gives

the boolean values such as true or false. If it relates to a specific class, then it returns true

as output. Otherwise, it returns false as output.

Syntax:

object-reference instanceof type;

27
`

Example: Program to Show Downcasting with instanceof Operator

class Company {}

public class Employee extends Company {

 public void check() {

 System.out.println("Success.");

 }

 public static void view(Company c) {

 if (c instanceof Employee) {

 Employee b1 = (Employee) c;

 b1.check();

 }

 }

 public static void main(String[] args) {

 Company c = new Employee();

 Employee.view(c);

 }}

Output:

Success.

 Separators: Separators are the lines that are used to virtual group related items together.

1.2.4. Java statement

Statements are similar to sentences in the English language. A sentence forms a complete idea
which can include one or more clauses. Likewise, a statement in Java forms a complete

28
`

command to be executed and can include one or more expressions. Every statement in Java must
be ended with semicolon(;).

In simpler terms, a Java statement is just an instruction that explains what should happen.

Types of Java Statements

Java supports three different types of statements:

 Expression statements change values of variables, call methods, and create objects.
An expression with a semicolon at the end is called an expression statement. For example

/Increment and decrement expressions
num++;
++num;
num--;
--num;

//Assignment expressions
num = 100;
num *= 10;

 Declaration statement is used to declare variables. For example

int num;

int num1 = 100;

string str;

 Control-flow statements determine the order that statements are executed. Typically, Java
statements parse from the top to the bottom of the program. However, with control-flow
statements, that order can be interrupted to implement branching or looping so that the
Java program can run particular sections of code based on certain conditions.

1.2.5. Implementing a Java program

Implementation of a Java application program involves a series of steps. They include :

 Creating the program
 Compiling the program
 Running the program

Remember that, before creating the program, the Java Development Kit (JDK) must be properly
installed on our system

Creating the program

29
`

Create a program using any text editor. Assume that we have entered the following program:

class Test
{

public static void main(String args[])
{

 System.out.println(“hello world”);
 System.out.println(“welcome to the world of Java”);
 System.out.println(“let us learn Java”);

 }
}

The program in a file must be saved with the class name Test.java ensure that the file name
contains the class name properly. This file is called the source file. Note that all java source files
will have the extension java.

Compiling the program

To compile the program, we must run the java compiler javac, with the name of the source file
on the command line. If everything is OK, the javac compiler creates a file
called Test.class containing the bytecodes of the program. Note that the compiler automatically
names the bytecode file as <classname>.class.

Running the program

To run the program, we must run the Java interpreter java, with the name of the class file on the
command line.

c:\> cd java

c:\java>java Test.java

c:\java>java Test

hello world
welcome to the world of Java
let us learn Java

30
`

Implementation of Java programs

1.2.6. Java Virtual Machine (JVM)

JVM (Java Virtual Machine) is an abstract machine. It is a specification that provides runtime
environment in which java bytecode can be executed. JVMs are available for many hardware and
software platforms (i.e. JVM is platform dependent).

What is JVM

1. A specification where working of Java Virtual Machine is specified. But implementation
provider is independent to choose the algorithm. Its implementation has been provided by
Oracle and other companies.

2. An implementation Its implementation is known as JRE (Java Runtime Environment).
3. Runtime Instance Whenever you write java command on the command prompt to run

the java class, an instance of JVM is created.

Source code

Java compiler

Byte code

Windows
interpreter

Machine code

Window
computer

ABC interpreter

Machine code

ABC computer

Macintosh
interpreter

Machine code

Macintosh
interpreter

31
`

What it does

The JVM performs following operation:

o Loads code
o Verifies code
o Executes code
o Provides runtime environment

JVM provides definitions for the:

o Memory area
o Class file format
o Register set
o Garbage-collected heap
o Fatal error reporting etc.

The following illustrates the process of compiling a java program into bytecode which is also
referred to as virtual machine code.

 Source code Bytecode

Process of compilation

 Virtual machine Real machine

Process of converting bytecode into machine code

1.2.7. Command Line Argument

A command-line argument is an information that directly follows the program's name on the

command line when it is executed. To access the command-line arguments inside a Java program

is quite easy. They are stored as strings in the String array passed to main().

Java program

Java compiler Virtual machine

Byte code Java interpreter Machine code Byte code Java interpreter

32
`

Example

The following program displays all of the command-line arguments that it is called with -

class test

{

 Public static void main(String[] args)

 {

 for(int i=0,i<args.length;i++)

 {

 System.out.println(args[i]);

 }

 }

}

When the program is executed output will be

10

20

30

1.3 Variables and Data types

Variables: Variables are the names you give to computer memory locations which are used to
store values in a computer program.

For example, assume you want to store two values 10 and 20 in your program and at a later
stage, you want to use these two values. Let's see in detail in 1.3.1 section given below.

Data types: a very simple but very important concept available in almost all the programming
languages which is called data types. As its name indicates, a data type represents a type of the
data which you can process using your computer program. It can be numeric, alphanumeric,
decimal, etc.

1.3.1. Constants, Variables and Data types

Constants: Constants in Java refer to fixed values that do not change during the execution of a
program. Java supports several types of constants such as integer constants, real constants,
single character constants, string constants and backslash character constants.

33
`

Integer Constants: An integer constant is a sequence of digits from 0 to 9 without decimal
points or fractional part or any other symbols. There are 3 types of integers namely decimal
integer, octal integers and hexadecimal integer.

Decimal Integers consists of a set of digits 0 to 9 preceded by an optional + or - sign. Spaces,
commas and non digit characters are not permitted between digits. Example for valid decimal
integer constants are 123 -234 0 are a decimal integer constant

Octal Integers constant consists of any combination of digits from 0 through 7 with a O at the
beginning. Some examples of octal integers are

Hexadecimal integer constant is preceded by OX or Ox, they may contain alphabets from A to
F or a to f. The alphabets A to F refers to 10 to 15 in decimal digits. Example of valid
hexadecimal integers are Ox12 x 0x2 are Hexa-Decimal integer constant

Real Constants
Real Constants consists of a fractional part in their representation. Integer constants are
inadequate to represent quantities that vary continuously. These quantities are represented by
numbers containing fractional parts like 26.082. Example of real constants are

 0.0065 -0.206 5.06
Real Numbers can also be represented by exponential notation. The general form for exponential
notation is mantissa exponent. The mantissa is either a real number expressed in decimal
notation or an integer. The exponent is an integer number with an optional plus or minus sign.

Single Character Constants
A Single Character constant represent a single character which is enclosed in a pair of quotation
symbols.
Example for character constants are ‘5’ ‘c’ ‘;’ ‘ ‘

All character constants have an equivalent integer value which are called ASCII Values.

34
`

String Constants
A string constant is a set of characters enclosed in double quotation marks. The characters in a
string constant sequence may be a alphabet, number, special character and blank space. Example
of string constants are "VISHAL" "1234" "God Bless" "!.....?"

Backslash Character Constants [Escape Sequences]
Backslash character constants are special characters used in output functions. Although they
contain two characters they represent only one character. Given below is the table of escape
sequence and their meanings.

Constant Meaning

'\a' .Audible Alert (Bell)

'\b' .Backspace

'\f' .Formfeed

'\n' .New Line

'\r' .Carriage Return

'\t' .Horizontal tab

'\v' .Vertical Tab

'\'' .Single Quote

'\"' .Double Quote

'\?' .Question Mark

'\\' .Back Slash

'\0' .Null

Variables:

A variable is a container which holds the value while the java program is executed. A variable is
assigned with a datatype.

35
`

Variable is a name of memory location. There are three types of variables in java: local, instance
and static.

Types of Variables

There are three types of variables in java:

o local variable
o instance variable
o static variable

1) Local Variable

A variable declared inside the body of the method is called local variable. You can use this
variable only within that method and the other methods in the class aren't even aware that the
variable exists.

A local variable cannot be defined with "static" keyword.

2) Instance Variable

A variable declared inside the class but outside the body of the method, is called instance
variable. It is not declared as static.

It is called instance variable because its value is instance specific and is not shared among
instances.

3) Static variable

A variable which is declared as static is called static variable. It cannot be local. You can create a
single copy of static variable and share among all the instances of the class. Memory allocation
for static variable happens only once when the class is loaded in the memory.

1. class A{
2. int data=50;//instance variable
3. static int m=100;//static variable
4. void method(){
5. int n=90;//local variable
6. }

36
`

Data types

Data types specify the different sizes and values that can be stored in the variable. There are two
types of data types in Java:

1. Primitive data types: The primitive data types include boolean, char, byte, short, int,
long, float and double.

2. Non-primitive data types: The non-primitive data types include Classes, Interfaces, and
Arrays.

In Java language, primitive data types are the building blocks of data manipulation. These are the
most basic data types available in Java language.

There are 8 types of primitive data types:

o boolean data type
o byte data type
o char data type
o short data type
o int data type
o long data type
o float data type
o double data type

Data Type Default Value Default size

Boolean false 1 bit

Char '\u0000' 2 byte

37
`

Byte 0 1 byte

Short 0 2 byte

Int 0 4 byte

Long 0L 8 byte

Float 0.0f 4 byte

Double 0.0d 8 byte

Boolean Data Type

The Boolean data type is used to store only two possible values: true and false. This data type is
used for simple flags that track true/false conditions.

The Boolean data type specifies one bit of information, but its "size" can't be defined precisely.

Example: Boolean one = false

Byte Data Type

The byte data type is an example of primitive data type. It isan 8-bit signed two's complement
integer. Its value-range lies between -128 to 127 (inclusive). Its minimum value is -128 and
maximum value is 127. Its default value is 0.

The byte data type is used to save memory in large arrays where the memory savings is most
required. It saves space because a byte is 4 times smaller than an integer. It can also be used in
place of "int" data type.

Example: byte a = 10, byte b = -20

Short Data Type

The short data type is a 16-bit signed two's complement integer. Its value-range lies between -
32,768 to 32,767 (inclusive). Its minimum value is -32,768 and maximum value is 32,767. Its
default value is 0.

The short data type can also be used to save memory just like byte data type. A short data type is
2 times smaller than an integer.

Example: short s = 10000, short r = -5000

38
`

Int Data Type

The int data type is a 32-bit signed two's complement integer. Its value-range lies between -
2,147,483,648 (-2^31) to 2,147,483,647 (2^31 -1) (inclusive). Its minimum value is -
2,147,483,648and maximum value is 2,147,483,647. Its default value is 0.

The int data type is generally used as a default data type for integral values unless if there is no
problem about memory.

Example: int a = 100000, int b = -200000

Long Data Type

The long data type is a 64-bit two's complement integer. Its value-range lies between -
9,223,372,036,854,775,808(-2^63) to 9,223,372,036,854,775,807(2^63 -1)(inclusive). Its
minimum value is - 9,223,372,036,854,775,808and maximum value is
9,223,372,036,854,775,807. Its default value is 0. The long data type is used when you need a
range of values more than those provided by int.

Example: long a = 100000L, long b = -200000L

Float Data Type

The float data type is a single-precision 32-bit IEEE 754 floating point.Its value range is
unlimited. It is recommended to use a float (instead of double) if you need to save memory in
large arrays of floating point numbers. The float data type should never be used for precise
values, such as currency. Its default value is 0.0F.

Example: float f1 = 234.5f

Double Data Type

The double data type is a double-precision 64-bit IEEE 754 floating point. Its value range is
unlimited. The double data type is generally used for decimal values just like float. The double
data type also should never be used for precise values, such as currency. Its default value is 0.0d.

Example: double d1 = 12.3

Char Data Type

The char data type is a single 16-bit Unicode character. Its value-range lies between '\u0000' (or
0) to '\uffff' (or 65,535 inclusive).The char data type is used to store characters.

Example: char letterA = 'A'

39
`

1.3.2. Declaration of variables and giving values to variables

A variable provides us with named storage that our programs can manipulate. Each variable in
Java has a specific type, which determines the size and layout of the variable's memory; the
range of values that can be stored within that memory; and the set of operations that can be
applied to the variable.

You must declare all variables before they can be used. Following is the basic form of a variable
declaration

data type variable[= value][,variable [= value]…];

Here data type is one of Java's datatypes and variable is the name of the variable. To declare
more than one variable of the specified type, you can use a comma-separated list.

Following are valid examples of variable declaration and initialization in Java −

Example
int a,b,c; //declares three ints, a,b,c.

int a=10,b=20; // example of initialization.

byte B=34; // initializes a byte type variable B.

double pi=3.14759; // declares and assigns a value of PI.

char a =’a’ // the char variable a is initialized with value ‘a’.

1.3.3. Scope of variables

There are three kinds of variables in Java which we have studied in 1.3.1. here we will study in
detail.

 Local variables

 Instance variables

 Class/Static variables

Local Variables

 Local variables are declared in methods, constructors, or blocks.

 Local variables are created when the method, constructor or block is entered and the
variable will be destroyed once it exits the method, constructor, or block.

40
`

 Access modifiers cannot be used for local variables.

 Local variables are visible only within the declared method, constructor, or block.

 Local variables are implemented at stack level internally.

 There is no default value for local variables, so local variables should be declared and an
initial value should be assigned before the first use.

Example

Here, age is a local variable. This is defined inside pupAge() method and its scope is limited to
only this method.

Public class Test

{

 public void pupAge()

 {

 Int age=0;

 age = age + 7;

 System.out.println(“ puppy age is : ” + age);

 }

 public static void main(String args[])

 {

 Test test = new Test();

 Test.pupAge();

 }

}

output

puppy age is : 7

in the above program it will show error while compiling it (say : variable number might not have
been initialized)

41
`

Instance Variables

 Instance variables are declared in a class, but outside a method, constructor or any block.

 When a space is allocated for an object in the heap, a slot for each instance variable
value is created.

 Instance variables are created when an object is created with the use of the keyword
'new' and destroyed when the object is destroyed.

 Instance variables hold values that must be referenced by more than one method,
constructor or block, or essential parts of an object's state that must be present
throughout the class.

 Instance variables can be declared in class level before or after use.

 Access modifiers can be given for instance variables.

 The instance variables are visible for all methods, constructors and block in the class.
Normally, it is recommended to make these variables private (access level). However,
visibility for subclasses can be given for these variables with the use of access modifiers.

 Instance variables have default values. For numbers, the default value is 0, for Booleans
it is false, and for object references it is null. Values can be assigned during the
declaration or within the constructor.

 Instance variables can be accessed directly by calling the variable name inside the class.
However, within static methods (when instance variables are given accessibility), they
should be called using the fully qualified name. ObjectReference.VariableName.

Example
Import java.io.*;

public class Employee{

// this instance variable is visible for any child class.

public String name;

//salary variable is visible in Employee class only.

private double salary;

// the name variable is assigned in the constructor.

42
`

public void setSalary(double empSal) {

 salary = empSal;

}

//this method prints the employee details

public void printEmp() {

System.out.println(“name : ‘ + name);

}

public static void main(String args[]) {

 Employee empOne = new Employee(“ prasanna“);

empOne.setSalary(100000);

empOne.printEmp();

}

}

output

name : prasanna

salary : 100000.0

Class/Static Variables

 Class variables also known as static variables are declared with the static keyword in a
class, but outside a method, constructor or a block.

 There would only be one copy of each class variable per class, regardless of how many
objects are created from it.

 Static variables are rarely used other than being declared as constants. Constants are
variables that are declared as public/private, final, and static. Constant variables never
change from their initial value.

 Static variables are stored in the static memory. It is rare to use static variables other than
declared final and used as either public or private constants.

43
`

 Static variables are created when the program starts and destroyed when the program
stops.

 Visibility is similar to instance variables. However, most static variables are declared
public since they must be available for users of the class.

 Default values are same as instance variables. For numbers, the default value is 0; for
Booleans, it is false; and for object references, it is null. Values can be assigned during
the declaration or within the constructor. Additionally, values can be assigned in special
static initializer blocks.

 Static variables can be accessed by calling with the class
name ClassName.VariableName.

 When declaring class variables as public static final, then variable names (constants) are
all in upper case. If the static variables are not public and final, the naming syntax is the
same as instance and local variables

1.3.5. Symbolic constants

Constants may appear repeatedly in number of places in the program. Constant values are
assigned to some names at the beginning of the program, then the subsequent use of these
names in the program has the effect of caving their defined values to be automatically
substituted in appropriate points. The constant is declared as follows:

Syntax : final type symbolicname= value;
 Eg final float PI =3.14159;
 final int STRENGTH =100;

Rules :-
symbolic names take the some form as variable names. But they one written in capitals to
distance from variable names. This is only convention not a rule. After declaration of
symbolic constants they shouldn’t be assigned any other value with in the program by
using an assignment statement. Consider the below example

STRENTH = 200 is illegal

44
`

Symbolic constants one declared for types there are not done in c & c++ where symbolic
constants one defined using the define statement. They can’t be declared inside a method.
They should be used only as class data members in the beginning of the class.

1.3.6. Type casting
Assigning a value of one type to a variable of another type is known as Type Casting.

Example:

Int x = 10;
Byte y = (byte) x;

n Java, type casting is classified into two types,

 Widening Casting(Implicit)

 Narrowing Casting(Explicitly done)

Widening or Automatic type converion

Automatic Type casting take place when,

 the two types are compatible

 the target type is larger than the source type

Example
public class Test
{

public static void main(String[] args)

45
`

{
 int I = 100; //no explicit type casting required
 long l = I; // no explicit type casting required
 float f = 1;
 System.out.println(“ int value” + i);
 System.out.println(“ Long value” + 1);
 System.out.println(“Float value” + f);
}

}
Output
Int value 100
Long value 100
Float value 100.0

Narrowing or Explicit type conversion

When you are assigning a larger type value to a variable of smaller type, then you need to
perform explicit type casting.

Example :

public class Test
{

public static void main(String[] args)
{
 double d = 100.04;
 long l = (long)d; //explicit type casting required
 int i = (int) l; //explicit type casting required
 System.out.println(“ Double value” + d);
 System.out.println(“ Long value” + 1);
 System.out.println(“Int value” + i);
}

}
Output
Double value 100.04
Long value 100
Int value 100

46
`

1.4. Summary
1. Java is an object-oriented, cross platform, multi-purpose programming language

produced by Sun Microsystems.

2. First released in 1995, it was developed to be a machine independent web technology.

3. It was based on C and C++ syntax to make it easy for programmers from those

communities to learn.

4. A class is a template that describes the data and behavior associated with an instance of

that class.

5. An object is an instance of a class.

6. Inheritance:A class can be derived from another class. In this case this class is called

a subclass. Another common phrase is that a class extends another class

7. Variables allow the Java program to store values during the runtime of the program.

8. Instance variable is associated with an instance of the class (also called object). Access

works over these objects.

9. A method is a block of code with parameters and a return value. It can be called on the

object.

10. There are four access levels: public, protected, default and private.

1.5. SAQ

1. Explain OOP paradigm?

2. Write a short note on application of OOPs

3. “Java is said to be JVM”, support your answer.

4. Explain variable, data types in java?

5. Write a short note on type casting in Java?

6. Explain Java tokens?

7. Explain OOPs?

47
`

Structure

2.0 Objectives
2.1 Introduction
2.2 Decision making with if statement

2.2.1. if statement
2.2.2. if… else statement
2.2.3. nesting of if…else statements
2.2.4. the else if ladder
2.2.5. the switch statement
2.2.6. the ? : operator

2.3. Decision making and looping
 2.3.1. the while statement
 2.3.2. the do statement

2.3.3. the for statement
2.3.4. jumps in loops

2.4. Summary
2.5. SAQ

2.0 Objective

This Unit discusses about Decision making and looping are the concepts which works as a
control statement in Java. Control statements in Java are the instructions which can control the
flow of execution of a program. In control statement, there are some conditions which are
specified by a programmer. These conditions are evaluated by the system and a particular block
of statements are executed.

2.1. Introduction

Decision making in programming is similar to decision making in real life. In programming also
we face some situations where we want a certain block of code to be executed when some
condition is fulfilled. A programming language uses control statements to control the flow of
execution of program based on certain conditions. These are used to cause the flow of execution
to advance and branch based on changes to the state of a program.

UNIT II – Decision Making and branching

48
`

2.1. Decision making with if statement

Java decision-making statements allow you to make a decision, based upon the result of a

condition. All the programs in Java have set of statements, which are executed sequentially in the

order in which they appear. It happens when jumping of statements or repetition of certain

calculations is not necessary. However, there may arise some situations where programmers have

to change the order of execution of statements based on certain conditions which involve kind of

decision-making statements. In this chapter, you will learn about how the control flow statements

work. The following flowchart shows the decision-making

technique in Java

Java has such decision-making capabilities within its program by the use of following the
decision making statements:

If statement

If…else statement

Nesting of if…else

Else if lader

Switch statement

The ? : operator

49
`

2.2.1. if statement

If statements in Java is used to control the program flow based on some condition, it's used to

execute some statement code block if the expression evaluated to true; otherwise, it will get

skipped. This statement is the simplest way to modify the control flow of the program. The

following is the basic format of “if statement”.

Syntax:

If(expression)

 {

 Statement 1;

 Statement 2;

 ….

 }

'Statement n' can be a statement or a set of statements, and if the test expression evaluated

to true, the statement block will get executed, or it will get skipped.

Flowchart of if Statement

50
`

Example

public class sample
{
 public static void main(String args[])

{
int a=20, b=30;
if(b>a)
System.out.println(“b is greater”);
}

}

Output
b is greater

2.2.2. if…else statement

If else statements in Java is also used to control the program flow based on some condition, only

the difference is: it's used to execute some statement code block if the expression is evaluated to

true, otherwise executes else statement code block.

The basic format of if…else statement is as follows:

Syntax:
if (test_expression)

 {

//execute your code
 }
else
 {
 //execute your code
 }

Flowchart of if…else

51
`

Example

public class sample
{
 public static void main(String args[])
 {

int a=20, b=30;
if(b & gt; a)
{
system.out.println(“b is greater”);
}
else
{
System.out.println(“a is greater”);
}

 }
}

Output

a is greater

2.2.3. nesting of if…else

A nested if is an if statement that is the target of another if or else. Nested if statements means an

if statement inside an if statement. Yes, java allows us to nest if statements within if statements.

i.e, we can place an if statement inside another if statement.

Syntax
if (condition)
 {
 //body of parent if
 if (condition)
 {
 //body of nested if
 }
 }

52
`

Flow chart of nested if

Example
// Java program to illustrate nested-if statement
class NestedIfDemo
{
 public static void main(String args[])
 {
 int i = 10;

 if (i == 10)
 {
 // First if statement
 if (i < 15)
 System.out.println("i is smaller than 15");

 // Nested - if statement
 // Will only be executed if statement above
 // it is true
 if (i < 12)
 System.out.println("i is smaller than 12 too");
 else
 System.out.println("i is greater than 15");
 }
 }
}
Output:

i is smaller than 15
i is smaller than 12 too

53
`

2.2.4. the else… if ladder
A nested if is an if statement that is the target of another if or else. Nested if statements means an

if statement inside an if statement. Yes, java allows us to nest if statements within if statements.

i.e, we can place an if statement inside another if statement.

Syntax:

if (condition 1)
{
 //executes when condition1 is true
else if(condition2)
 {
 //executes when condition2 is true
 }
else
{
 //execute your code
}

Example

public class sample
{
 public static void main(String args[])
 {

int a=20, b=30;
if(b > a)
{
system.out.println(“b is greater”);
}
else if (a> b)
{
System.out.println(“a is greater”);
}
else
{
 System.out.println(“both are equal”);

 }
 }
}

Output
Both are equal

54
`

2.2.5. The switch statement

Java switch statement is used when you have multiple possibilities for the if statement.

Syntax

Switch(variable)
{
 case 1:
 //execute your code
 break;

 case 2:
 //execute your code
 break
 :

:

 case n:
 //execute your code
 break;
 default:

//execute your code
 break;

}

After the end of each block it is necessary to insert a break statement because if the programmers

do not use the break statement, all consecutive blocks of codes will get executed from each case

onwards after matching the case block.

Example of a Java Program to Demonstrate Switch Statement

Example
public class sample
{

public static void main(String args[])
{
int a= 5;
switch (a)
 {
 Case 1:
 System.out.println(“ you chose one”);
 break;

55
`

case 1:
 System.out.println(“ you chose one”);
 break;
case 2:
 System.out.println(“ you chose two”);
 break;
case 3:
 System.out.println(“ you chose three”);
 break;
case 4:
 System.out.println(“ you chose four”);
 break;
case 5:
 System.out.println(“ you chose five”);
 break;
default:
 System.out.println(“ Invalid choice.Enter a no between 1 and 5”);
} break;

 }
}
 output
You chose five

When none of the cases is evaluated to true, the default case will be executed, and break

statement is not required for default statement.

2.2.6. the ? : operator

When none of the cases is evaluated to true, the default case will be executed, and break

statement is not required for default statement.

expr1? expr2:expr3

where expr1 is a boolean expression and expr2 and expr3 are the expressions of any type other

than void. The expr2 and expr3 must be of the same type.

If expr1 has value true, the operator returns a result expr2 .

If expr1 has value false, the operator returns a result expr3 . During the calculates the value of

the first argument . if it has the true value , then calculates the second (middle) argument

returned as a result . However , if the calculated result of the first argument is false, then it is

56
`

given the third (last) argument the returned as a result. Here is an example of the use of the

operator " ? " :

//Program to Find greatest of three numbers using Conditional Operator

 import java.util.Scanner; //program uses Scanner class

public class ConditionalOperator

{

 public static void main(String[] args)

 {

 int a,b,c,result;

 //create Scanner object to obtain input from keyboard

 Scanner input=new Scanner(System.in);

 System.out.print("Enter the Three Number : "); //prompt for input

 a=input.nextInt(); //Read First number

 b=input.nextInt(); //Read Second number

 c=input.nextInt(); //Read third number

 result = (a>b)? ((a>c)?a:c) : ((b>c)?b:c);

 System.out.println(result + " is Greatest");

 }

 }

2.3. Decision making and looping

Looping statements allow the programmer to execute some group of statement repetitively
multiple times.

Control goes inside the body of the loop if the condition is true otherwise goes outside of looping
block. The main difference between decision making statements and looping statement is
decision making statement execute once alike looping statements executes several times.

There are two types of loop

1. Entry control loop (while loop and for loop)
2. Exit control loop (do … while loop)

Entry control loops are the loop in which condition is tasted at the beginning of the loop.

Exit control loops are the loop which condition is tasted at the end of the loop.

Do … while is an exit control loop. For and while are entry control loop.

57
`

Note: Exit control loops are executed at least once in their lifetime.

Advantages of looping:

 Reduce the memory consumption.
 Reduce the length of the code.
 No need to write same code again to execute several times

Following are the types of looping statements

 while loop
 do … while loop
 for loop
 nested loops

2.3.1. The while statement

While loop is an entry control looping statement that allows code to be executed until the
boolean condition is true.

You can also call while loop as a repeating if statement.

Syntax :

// assignment of counter variable

while (condition)

{

 // body of loop

 // increment or decrement of variable

}

Flow chart for while statement

58
`

Example

Class whileloop

{

public static void main(String args[])

{

 int i = 0;

 while(i < 10)

{

 //this loop will be executed 10 times

 System.out.println(i);

 i++; //increment of counter variable

}

}

}

Output:

0

1

2

59
`

3

4

5

6

7

8

9

In above example, while loop is executed 10 times. Initially counter variable i is assigned by

value 0 then the loop is executed 10 times and each time counter variable i is incremented by 1.

2.3.2. the do statement

Do … while is an exit control looping statement which is also used to execute a block of

instructions several times. This loop is executed at least once in its lifetime whether the condition

is true or false.

Syntax

// assignment of counter variable

do (condition)

{

 // body of statement

 // increment or decrement of counter variable

}

While (condition); // statement must be ended with semicolon here

Flow chart

60
`

Class whileloop

{

public static void main(String args[])

{

 int i = 0;

do

{

 //this loop will be executed 10 times

 System.out.println(i);

 i++; //increment of counter variable

}

While (i < 10);

}

}

Output

0

1

2

3

4

5

6

7

8

9

2.3.3. The for statement

For loop is an entry control loop which works same as the other two loop but its syntax is

different. In other two loop counter variable is declared outside the body of the loop. Here, the

counter variable is declared within for loop itself but the counter variable is declared and

assigned by initial value only once. Increment and condition checks will be done multiple times.

61
`

Syntax:

for (initialization; condition ; increment/decrement)

{

// assignment of counter variable

 // body of statement

 // increment or decrement of counter variable

}

Flow chart

Example:

Class forloop

{

public static void main(String args[])

{

 for(int i = 0; i<10;i++)

{

 //this loop will be executed 10 times

 System.out.println(i);

}

}

62
`

}

Output

0

1

2

3

4

5

6

7

8

9

2.3.4. Jump in loop

Loops perform a set of operations repeatedly until the control variable fails to satisfy the test

condition. The number of times a loop is repeated is decided in advance and the condition is

written to achieve this. Sometime, when executing a loop it becomes desirable to skip a part of

the loop or to leave the loop as soon as certain condition occurs. For example, consider the case

of searching for a particular name in a list containing, like 100 names. A program loop written

for reading and testing the names a 100 times must be terminated as soon as the desired name is

found. Java permits a jump from one statement to the end or beginning of a loop as well as a

jump out of a loop.

Jumping out of a loop

In the previous topics we saw that loop can accomplished by using the break statement. Even we

come across the break in switch statement. This statement can also be used within while, do or

for loops too. Consider the below examples with explains jumping in loops and jump out of a

loop.

While(condition)
{
 ………
 ………

63
`

 if(condition)
 break;
 ……….

 ………..
}

Skipping a part of a loop

During the loop operations, it may be necessary to skip a part of the body of the loop under

certain conditions. For example, in processing of applications for some job, we might like to

exclude the processing of data of applicants belonging to a certain category. On reading the

category code of an applicant, a test is made to see whether his application should be considered

or not. If its is not to be considered, the part of the program loop that processes the application

details is skipped and the execution continues with the next loop operation.

2.4 Summary

1. An 'If' statement decides whether to execute a statement or which statement has to

execute first between the two.

2. In Java, the control statements are divided into three categories which are

selection statements, iteration statements, and jump statements.

3. List of Different control statements in C Programming: Do check it out here. The if, else,

switch, case and default are used for selection purposes. The do, while and for are used

for iterative purposes.

4. The goto, break, continue and return are used for jumping purposes.

5. The main types of control statements are FOR, WHILE, IF and CASE.

6. The FOR statement is used to execute one or more statements repeatedly, while

incrementing or decrementing a variable with each repetition, until a condition is met.

2.5. SAQ

1. Write a short note on condition statement in Java?

2. Explain briefly control statements in Java?

3. List the difference between do..while and while statements in Java?

64
`

Unit – III Classes, Objects and Methods

3.0. Structure

3.1. Objective

3.2. Class, Objects and Methods

 3.2.1. Defining a class

 3.2.2. Fields declaration

 3.2.3. Methods declaration

 3.2.4. Creating objects

3.2.5. Accessing class members

 3.2.6. Constructors

 3.2.7. Methods Overloading

 3.2.8. Static members

 3.2.9. Nesting of methods

 3.2.10. Inheritance

 3.2.11. Overriding methods

 3.2.12. Final variables, methods and Final classes

 3.2.13. Abstract methods and classes, Visibility control

3.3. Arrays

 3.3.1. One dimensional Array

 3.3.2. Two dimensional arrays

3.4. Strings

3.5. Vectors

3.6. Wrapper classes

3.7. Enumerated types

3.8. Summary

3.9. SAQ

65
`

3.1. Objective

Java is a true Object-Oriented language and therefore the underlying structure of all Java

programs concentrates on classes. Anything that is represented in a Java program must be

encapsulated in a class that defines the state and behavior of the basic program components

known as Objects. Classes create objects and objects use methods to communicate between

them. This makes the sense of Object Oriented Programming. In this unit we concentrate on

what are Classes, objects, methods and arrays in detail.

3.2. Class, Objects and Methods

3.2.1. Defining a class

A class is a user defined blueprint or prototype from which objects are created. It represents the

set of properties or methods that are common to all objects of one type. In general, class

declarations can include these components, in order:

1. Modifiers : A class can be public or has default access.

2. Class name: The name should begin with a initial letter.

3. Superclass (if any): The name of the class’s parent (superclass), if any, preceded by the

keyword extends. A class can only extend (subclass) one parent.

4. Interfaces(if any): A comma-separated list of interfaces implemented by the class, if any,

preceded by the keyword implements. A class can implement more than one interface.

5. Body: The class body surrounded by braces, { }.

3.2.2. Field Declaration

Data is encapsulated in a class by placing data fields inside the body of the class definition. The

variables are called instance variables because they are created whenever an object of the class

instantiated. We can declare the instance variables exactly the same way as we declare local

variables. Instance variables are also known as member variables. We can also declare the

instance variables exactly the same way as we declare local variables. Consider the following

example for field declaration

Class Area

66
`

{

 int length;

 int breadth;

}

In the above example Area is the name of the class which consists of two variables(length and

breadth) of integer type.

Note: the variables declared above does not have any storage space in the memory.

3.2.3. Methods declaration

A method is a collection of statements that perform some specific task and return the result to the

caller. A method can perform some specific task without returning anything. Methods allow us

to reuse the code without retyping the code. In Java, every method must be part of some class

which is different from languages like C, C++, and Python.

Methods are time savers and help us to reuse the code without retyping the code.

In general, method declarations has six components:

 Modifier-: Defines access type of the method i.e. from where it can be accessed in your

application. In Java, there 4 type of the access specifiers.

 public: accessible in all class in your application.

 protected: accessible within the class in which it is defined and in its subclass(es)

 private: accessible only within the class in which it is defined.

 default (declared/defined without using any modifier) : accessible within same class

and package within which its class is defined.

 The return type : The data type of the value returned by the method or void if does not

return a value.

 Method Name : the rules for field names apply to method names as well, but the

convention is a little different.

 Parameter list : Comma separated list of the input parameters are defined, preceded with

their data type, within the enclosed parenthesis. If there are no parameters, you must use

empty parentheses ().

67
`

 Exception list : The exceptions you expect by the method can throw, you can specify these

exception(s).

 Method body : it is enclosed between braces. The code you need to be executed to perform

your intended operations.

Consider the following simple example

Class rectangle
{
int length;
int breadth;
void getdata(int x, int y) //method declaration

{
length=x;
breadth=y;
}

int rectarea() // declaration of another method
{
int area = length * breadth;
return(area);
}
}
3.2.4. Creating Objects

It is a basic unit of Object Oriented Programming and represents the real life entities. A typical

Java program creates many objects, which as you know, interact by invoking methods. An object

consists of :

1. State/attribute : It is represented by attributes of an object. It also reflects the properties of

an object.

2. Behavior : It is represented by methods of an object. It also reflects the response of an

object with other objects.

3. Identity : It gives a unique name to an object and enables one object to interact with other

objects.

Example of an object : dog

Identity

Name of the dog

State/ Attribute

Breed

Age

Color

Behaviors

Bark

Sleep

eat

68
`

Objects correspond to things found in the real world. For example, a graphics program may have

objects such as “circle”, “square”, “menu”. An online shopping system might have objects such

as “shopping cart”, “customer”, and “product”.

Declaring Objects (Also called instantiating a class). When an object of a class is created, the

class is said to be instantiated. All the instances share the attributes and the behavior of the

class. But the values of those attributes, i.e. the state are unique for each object. A single class

may have any number of instances.

Objects in Java are created using the “new” operator. The “new” operator created an object of

the specified class and returns a reference to that object. Consider the following example for

creating an object of type Rectangle.

Rectangle rect1; // declare the object

Rect1 = new Rectangle(); //instantiate the object

The first statement declares a variable to hold the object reference and the second one actually

assigns the object reference to the variable. The variable “rect1” is now an object of the

Rectangel class. In the above example Rectangle() is the default constructor of the class. We

create any number of objects of Rectangle. For example

Rectangle rect1 = new Rectangle();

Rectangle rect2 = new Rectangle();

Class dog

Dog1

Dog2

State/attributes
 Breed
 Age
 color

Behaviours
 Bar
 Sleep
 eat

Dog3

Dog4

69
`

It is important to understand that each object has its own copy of the instance variables of its

class. This means that any changes to the variables of one object have not effect on the variables

of another is also possible to create two or more references to the same object.

Initializing an object

The new operator instantiates a class by allocating memory for a new object and returning a

reference to that memory. The new operator also invokes the class constructor.

// Class Declaration

public class Dog
{
 // Instance Variables
 String name;
 String breed;
 int age;
 String color;

 // Constructor Declaration of Class
 public Dog(String name, String breed, int age, String color)
 {
 this.name = name;
 this.breed = breed;
 this.age = age;
 this.color = color;
 }

 // method 1
 public String getName()
 {
 return name;
 }

 // method 2
 public String getBreed()
 {
 return breed;
 }

 // method 3
 public int getAge()
 {
 return age;
 }

70
`

 // method 4
 public String getColor()
 {
 return color;
 }

 @Override
 public String toString()
 {
 return("Hi my name is "+ this.getName()+".\nMy breed,age and color are " +
 this.getBreed()+"," + this.getAge()+ ","+ this.getColor());
 }

 public static void main(String[] args)
 {
 Dog tuffy = new Dog("tuffy","papillon", 5, "white");
 System.out.println(tuffy.toString());
 }
}

Output

Hi my name is tuffy.

My breed, age and color are paillon,5,white

This class contains a single constructor. We can recognize a constructor because its declaration

uses the same name as the class and it has no return type. The Java compiler differentiates the

constructors based on the number and the type of the arguments. The constructor in

the Dog class takes four arguments. The following statement provides

“tuffy”,”papillon”,5,”white” as values for those arguments:

Dog tuffy= new Dog(“tuffy”,”papillin”,5,”white”);

3.2.5. Accessing class members

In the previous topic we have gone through objects, each containing its own set of variables, how

to assign values to the variable in the program. All variables must be assigned values before

they are used. Since we are outside the class, we cannot access the instance variables and the

methods directly. In order to access variable we must use the concerned object and the dot

operator as shown below

71
`

Syntax

Objectname.variablename = value;

Objectname.methodname(parameter-list);

Objectname is the name of the object, variablename is the name of the instance variable inside

the object that we wish to access, methodname is the method that we wish to call, and parameter-

list is a common separated list of “actual values” (or expressions) that must match in type and

number with the parameter list of the methodname declare in the class.

For example instance variables of the class “Rectange” may be accessed and assigned values as

follows

Rect1.lenght =15

Rect1.breadth =90

Rect2.lenght =24

Rect2.breadth =25

Note that the two objects rect1 and rect2 store different values.

Suppose if we are using the method “ getdata”, we can call the “getdata” on any “Rectangle”

object to set the values of both length and breadth. The following is the segment to achieve this.

Rectangle rect1 = new Rectangle(); // creating an object

rect1.getdata(25, 23); // calling the method using the object

the above code created “rect1” object and then passes in the values 25 and 23 for x and y

parameters of the method “getdata”. This method then assigns these values to length and breadth

variables respectively. Consider the following method again

void getdata(int x, int y)

{

 Length = x;

Breadth = y;

}

Now the object “rect1” contains values for its variables, we can compute the are of the rectangle

represented by “rect1”. The above can also be done in other ways which is as follows.

 In the first approach to acces the instance variables using the dot operator and compute

the “area”

72
`

int area1 = rect1.lenght * rect1.breadth;

 In the second approach is to call the method rectarea declared inside the class.

 Int area1 = rect1.rectarea() ; // calling the method

Let us consider the following example

Class Rectangle
{

int length, breadth; // declaration of variables
void getdata(int x, int y) //definition of method
{
 length = x;
 breadth = y;
}
int rectarea() // definition of another method
{
 int area = lenth * breadth;
 return(area);
}

}
Class AreaRect // class with main method
{

public static void main(String args[])
 {
 int area1.area2;
 Rectangle rect1 = new Rectangle(); // creating objects

 Rectangle rect2 = new Rectangle();
 rect1.length = 25; // accessing variables
 rect2.breadth = 23;
 rect2.getdata (12,15);
 area2 = rect2.rectarea();
 System.out.println(“area value for the first area= ” + area1);
 System.out.println(“area value for the second area= ” + area2);
}
}
Output

Area value for the first area = 575

Area value for the second area = 180

3.2.6. Constructors

In Java, a constructor is a block of codes similar to the method. It is called when an instance of

the class is created. At the time of calling constructor, memory for the object is allocated in the

memory. It is a special type of method which is used to initialize the object. Every time an object

73
`

is created using the new() keyword, at least one constructor is called. It calls a default constructor

if there is no constructor available in the class. In such case, Java compiler provides a default

constructor by default. There are two types of constructors in Java: no-arg constructor, and

parameterized constructor.

Note: It is called constructor because it constructs the values at the time of object creation.
It is not necessary to write a constructor for a class. It is because java compiler creates a
default constru ctor if your class doesn't have any.

Rules for creating Java constructor

There are two rules defined for the constructor.

1. Constructor name must be the same as its class name
2. A Constructor must have no explicit return type
3. A Java constructor cannot be abstract, static, final, and synchronized

Note: we can use access modifiers while declaring a constructor. It controls the object
creation. In other words, we can have private, protected, public or default constructor in
Java.

Types of Java constructors

There are two types of constructors in Java:

1. Default constructor (no-arg constructor)
2. Parameterized constructor

 Java Default Constructor

A constructor is called "Default Constructor" when it doesn't have any parameter.

Syntax of default constructor

1. <class_name>(){}

Consider the following example for constructor in which we creating the no-arg constructor in
the Bike class. It will be invoked at the time of object creation.

//Java Program to create and call a default constructor
class Bike1{
//creating a default constructor
Bike1(){

74
`

System.out.println("Bike is created");
}
//main method
public static void main(String args[])
{
//calling a default constructor
Bike1 b=new Bike1();
}
}

Output:

Bike is created

Rule: if there is no constructor in a class, compiler automatically creates a default constructor.

Example of default constructor that displays the default value

class Student3{

int id;

String name;

void display(){System.out.println(id+" "+name);}

public static void main(String args[]){

Student3 s1=new Student3();

Student3 s2=new Student3();

s1.display();

s2.display();

}
}

Output:

75
`

0 null
0 null

Explanation: In the above class,you are not creating any constructor so compiler provides you a

default constructor. Here 0 and null values are provided by default constructor.

 Java Parameterized Constructor

A constructor which has a specific number of parameters is called a parameterized constructor.

Why use the parameterized constructor? The parameterized constructor is used to provide

different values to distinct objects. However, you can provide the same values also.

Example of parameterized constructor

In this example, we have created the constructor of Student class that have two parameters. We

can have any number of parameters in the constructor.

Example for parameterized constructor

class Student4{

 int id;

 String name;

 Student4(int i,String n){

 id = i;

 name = n;

 }

 void display(){System.out.println(id+" "+name);}

 public static void main(String args[]){

 Student4 s1 = new Student4(111,"Karan");

76
`

 Student4 s2 = new Student4(222,"Aryan");

 s1.display();

 s2.display();

 }
}

Output:

111 Karan

222 Aryan

3.2.7. Method overloading

If a class has multiple methods having same name but different in parameters, it is known

as Method Overloading. If we have to perform only one operation, having same name of the

methods increases the readability of the program.

Suppose you have to perform addition of the given numbers but there can be any number of

arguments, if you write the method such as a(int,int) for two parameters, and b(int,int,int) for

three parameters then it may be difficult for you as well as other programmers to understand the

behavior of the method because its name differs.

Advantage of method overloading

 Method overloading increases the readability of the program.

Note: Method overloading is not possible by changing the return type of the method only.

Different ways to overload the method

There are two ways to overload the method in java

1. By changing number of arguments
2. By changing the data type

1) Method Overloading: changing no. of arguments

77
`

In this example, we have created two methods, first add() method performs addition of two

numbers and second add method performs addition of three numbers. We are creating static

methods so that we don't need to create instance for calling methods.

class Adder{

static int add(int a,int b){return a+b;}

static int add(int a,int b,int c){return a+b+c;}

}

class TestOverloading1{

public static void main(String[] args){

System.out.println(Adder.add(11,11));

System.out.println(Adder.add(11,11,11));
}}

Output:

22

33

2) Method Overloading: changing data type of arguments

In this example, we have created two methods that differs in data type. The first add method

receives two integer arguments and second add method receives two double arguments.

class Adder{

static int add(int a, int b){return a+b;}

static double add(double a, double b){return a+b;}

}

class TestOverloading2{

public static void main(String[] args){

78
`

System.out.println(Adder.add(11,11));

System.out.println(Adder.add(12.3,12.6));
}}

Output:

22

24.9

3.2.8. Static Members

apply static keyword with any method, it is known as static method. A static method belongs

to the class rather than the object of a class. A static method can be invoked without the need for

creating an instance of a class. A static method can access static data member and can change

the value of it.

Static Method in Java belongs to the class and not its instances. ... Usually, static methods are

utility methods that we want to expose to be used by other classes without the need of creating

an instance.

Static method in Java is a method which belongs to the class and not to the object. A static

method can access only static data.

 It is a method which belongs to the class and not to the object(instance)

 A static method can access only static data. It can not access non-static data (instance

variables)

 A static method can call only other static methods and can not call a non-static method

from it.

 A static method can be accessed directly by the class name and doesn’t need any object

 A static method cannot refer to "this" or "super" keywords in anyway

Syntax :

Class-name.method-name

79
`

Consider the following java program to demonstrate the use of a static method

class Student{

 int rollno;

 String name;

 static String college = "ITS";

 static void change(){

 college = "BBDIT";

 }

 Student(int r, String n){

 rollno = r;

 name = n;

 }

 void display(){System.out.println(rollno+" "+name+" "+college);}

}

public class TestStaticMethod{

 public static void main(String args[]){

 Student.change();//calling change method

 //creating objects

 Student s1 = new Student(111,"Karan");

 Student s2 = new Student(222,"Aryan");

 Student s3 = new Student(333,"Sonoo");

 //calling display method

 s1.display();

80
`

 s2.display();

 s3.display();

 }

}

Out put

111 karan BBDIT

222 Aryan BBDIT

333 Sono BBDIT

3.2.9. Nesting of Methods

When a method in java calls another method in the same class, it is called Nesting of methods

Consider the following example to understand nesting of methods
import java.util.Scanner;
public class Nesting_methods
{
 Int perimeter(int l, int b)
{
 int pr = 12 * (l + b);
 return pr;
}
int area(int l, int b)
{
 int pr = perimeter(l , b);
 System.out.println(“perimeter:” + pr);
 int ar = 6 * l * b;
 return ar;
}

int volume(int l, int b, int h)
{
 int ar= area(l, b);
 System.out.println(“area=” + ar);
int vol;
vol = l * b * h;
return vol;
}
Public static void main(String[] args)
{

81
`

 Scanner s= new Scanner(System.in);
 System.out.println(“enter length of cuboid:”);
int l = s.nextInt();
 System.out.println(“enter breadth of cuboid:”);
int b = s.nextInt();
System.out.println(“enter height of cuboid:”);
int h = s.nextInt();
Nesting_methods obj = new Nesting_methods();
int vol = obj.volume(l, b, h);
System.out.println(“Volume=” + vol);
}
}

3.2.10. Inheritance

Inheritance in Java is a mechanism in which one object acquires all the properties and

behaviors of a parent object. It is an important part of OOPs (Object Oriented programming

system).

The idea behind inheritance in Java is that you can create new classes that are built upon existing

classes. When you inherit from an existing class, you can reuse methods and fields of the parent

class. Moreover, you can add new methods and fields in your current class also.

Inheritance represents the IS-A relationship which is also known as a parent-child relationship.

Why use inheritance in java

o For Method Overriding (so runtime polymorphism can be achieved).

o For Code Reusability.

Terms used in Inheritance

o Class: A class is a group of objects which have common properties. It is a template or

blueprint from which objects are created.

o Sub Class/Child Class: Subclass is a class which inherits the other class. It is also called

a derived class, extended class, or child class.

o Super Class/Parent Class: Superclass is the class from where a subclass inherits the

features. It is also called a base class or a parent class.

82
`

o Reusability: As the name specifies, reusability is a mechanism which facilitates you to

reuse the fields and methods of the existing class when you create a new class. You can

use the same fields and methods already defined in the previous class.

The syntax of Java Inheritance

Class Subclass-name extends Superclass-name

{

 // methods and fields

}

The extends keyword indicates that you are making a new class that derives from an existing
class. The meaning of "extends" is to increase the functionality.

In the terminology of Java, a class which is inherited is called a parent or superclass, and the new
class is called child or subclass.

As displayed in the above figure, Programmer is the subclass and Employee is the superclass.

The relationship between the two classes is Programmer IS-A Employee. It means that

Programmer is a type of Employee.

class Employee{
 float salary=40000;
}
class Programmer extends Employee{
 int bonus=10000;
 public static void main(String args[]){
 Programmer p=new Programmer();
 System.out.println("Programmer salary is:"+p.salary);

83
`

 System.out.println("Bonus of Programmer is:"+p.bonus);
}
}

Output

Programmer salary is : 40000.0

Bonus of programmer is : 10000.0

In the above example, Programmer object can access the field of own class as well as of

Employee class i.e. code reusability.

Types of inheritance in java

On the basis of class, there can be three types of inheritance in java: single, multilevel and

hierarchical. In java programming, multiple and hybrid inheritance is supported through interface

only.

Note: Multiple inheritance is not supported in java through class.

When one class inherits multiple classes, it is known as multiple inheritance. For Example:

84
`

Why multiple inheritance is not supported in java?

To reduce the complexity and simplify the language, multiple inheritance is not supported in

java. Consider a scenario where A, B, and C are three classes. The C class inherits A and B

classes. If A and B classes have the same method and you call it from child class object, there

will be ambiguity to call the method of A or B class.

Since compile-time errors are better than runtime errors, Java renders compile-time error if you

inherit 2 classes. So whether you have same method or different, there will be compile time

error.

class A{
void msg(){System.out.println("Hello");}
}
class B{
void msg(){System.out.println("Welcome");}
}
class C extends A,B{//suppose if it were

 Public Static void main(String args[]){
 C obj=new C();
 obj.msg();//Now which msg() method would be invoked?
}
}

3.2.11. Overriding methods

If subclass (child class) has the same method as declared in the parent class, it is known

as method overriding in Java. In other words, if a subclass provides the specific

85
`

implementation of the method that has been declared by one of its parent class, it is known as

method overriding.

Usage of Java Method Overriding

o Method overriding is used to provide the specific implementation of a method which is
already provided by its superclass.

o Method overriding is used for runtime polymorphism

Rules for Java Method Overriding

1. The method must have the same name as in the parent class
2. The method must have the same parameter as in the parent class.
3. There must be an IS-A relationship (inheritance).

Consider the following example

class Vehicle{
 void run(){System.out.println("Vehicle is running");}
 }
 class Bike extends Vehicle{

 public static void main(String args[]){
 Bike obj = new Bike();
 obj.run();
 }
}

Out put
Vehicle is running

Example of method overriding

In this example, we have defined the run method in the subclass as defined in the parent class but

it has some specific implementation. The name and parameter of the method are the same, and

there is IS-A relationship between the classes, so there is method overriding.

class Vehicle{
 void run(){System.out.println("Vehicle is running");}
 }
 class Bike2 extends Vehicle{
 void run(){System.out.println("Bike is running safely");}

86
`

 public static void main(String args[]){
 Bike2 obj = new Bike2();
 obj.run();
 }
}

Output
Bike is running safely

3.2.12. Final variables, methods and classes

final keyword is used in different contexts. First of all, final is a non-access modifier

applicable only to a variable, a method or a class. Following are different contexts where final

is used.

Final variable to create constant variables

Final methods prevent method overriding

Final classes prevent inheritance

 Final variables

When a variable is declared with final keyword, its value can’t be modified, essentially, a

constant. This also means that you must initialize a final variable. If the final variable is a

reference, this means that the variable cannot be re-bound to reference another object, but

internal state of the object pointed by that reference variable can be changed i.e. you can add or

remove elements from final array or final collection. It is good practice to represent final

variables in all uppercase, using underscore to separate words

// a final variable

final int THRESHOLD = 5;

// a blank final variable

final int THRESHOLD;

// a final static variable PI

static final double PI = 3.141459265;

// a blank final static variable

Static final double PI;

87
`

Initializing a final variable

We must initialize a final variable, otherwise compiler will throw compile-time error. A final

variable can only be initialized once, either via an initializer or an assignment statement. There

are three ways to initialize a final variable:

1. You can initialize a final variable when it is declared. This approach is the most common.

A final variable is called blank final variable, if it is not initialized while declaration.

Below are the two ways to initialize a blank final variable.

2. A blank final variable can be initialized inside instance-initializer block or inside

constructor. If you have more than one constructor in your class then it must be initialized

in all of them, otherwise compile time error will be thrown.

3. A blank final static variable can be initialized inside static block.

Consider the following example for working with final variable

//Java program to demonstrate different
// ways of initializing a final variable

class Gfg

{
 // a final variable

 // direct initialize
 final int THRESHOLD = 5;

 // a blank final variable
 final int CAPACITY;

 // another blank final variable
 final int MINIMUM;

 // a final static variable PI
 // direct initialize
 static final double PI = 3.141592653589793;

 // a blank final static variable
 static final double EULERCONSTANT;

 // instance initializer block for
 // initializing CAPACITY
 {
 CAPACITY = 25;
 }

88
`

 // static initializer block for
 // initializing EULERCONSTANT
 static{
 EULERCONSTANT = 2.3;
 }

 // constructor for initializing MINIMUM
 // Note that if there are more than one
 // constructor, you must initialize MINIMUM
 // in them also
 public GFG()
 {
 MINIMUM = -1;
 }

}

When to use a final variable:

The only difference between a normal variable and a final variable is that we can re-

assign value to a normal variable but we cannot change the value of a final variable once

assigned. Hence final variables must be used only for the values that we want to remain

constant throughout the execution of program.

Reference final variable: When a final variable is a reference to an object, then this final

variable is called reference final variable. For example, a final StringBuffer variable

looks like

 final StringBuffer sb;

As you know that a final variable cannot be re-assign. But in case of a reference final variable,

internal state of the object pointed by that reference variable can be changed. Note that this is not

re-assigning. This property of final is called non-transitivity.

// Java program to demonstrate
// reference final variable

class Gfg
{
 public static void main(String[] args)
 {
 // a final reference variable sb
 final StringBuilder sb = new StringBuilder("Geeks");

89
`

 System.out.println(sb);

 // changing internal state of object
 // reference by final reference variable sb
 sb.append("ForGeeks");

 System.out.println(sb);
 }
}
Output:

Geeks

GeeksForGeeks

The non-transitivity property also applies to arrays, because arrays are objects in java. Arrays

with final keyword are also called final arrays.

 Final classes

When a class is declared with final keyword, it is called a final class. A final class cannot be

extended(inherited). There are two uses of a final class :

1. One is definitely to prevent inheritance, as final classes cannot be extended. For example,

all Wrapper Classes like Integer,Float etc. are final classes. We cannot extend them.

2. The other use of final with classes is to create an immutable class like the

predefined String class. you cannot make a class immutable without making it final.

 Final methods

When a method is declared with final keyword, it is called a final method. A final method cannot

be overridden. The Object class does this—a number of its methods are final. We must declare

methods with final keyword for which we required to follow the same implementation

throughout all the derived classes. The following fragment illustrates final keyword with a

method:

class A

{

 final void m1()

 {

 System.out.println(“this is a final method”);

90
`

 }

}

class B

{

 void m1()

{

 //compile-error! Can’t override.

 System.out.prinln(“illegal!”);

}

 }

3.2.13. Abstract methods and classes, Visibility control

An abstract class is a class that is declared abstract—it may or may not include abstract

methods. Abstract classes cannot be instantiated, but they can be subclassed. An abstract

method is a method that is declared without an implementation (without braces, and followed by

a semicolon), like this:

abstract void moveTo(double deltaX, double deltaY);

If a class includes abstract methods, then the class itself must be declared abstract, as in:

public abstract class GraphicObject {
 // declare fields
 // declare nonabstract methods
 abstract void draw();
}

When an abstract class is subclassed, the subclass usually provides implementations for all of the

abstract methods in its parent class. However, if it does not, then the subclass must also be

declared abstract. Methods in an interface that are not declared as default or static

are implicitly abstract, so the abstractmodifier is not used with interface methods. (It can be used,

but it is unnecessary.

91
`

In an object-oriented drawing application, you can draw circles, rectangles, lines, Bezier curves,

and many other graphic objects. These objects all have certain states (for example: position,

orientation, line color, fill color) and behaviors (for example: moveTo, rotate, resize, draw) in

common. Some of these states and behaviors are the same for all graphic objects (for example:

position, fill color, and moveTo). Others require different implementations (for example, resize

or draw). All GraphicObjects must be able to draw or resize themselves; they just differ in how

they do it. This is a perfect situation for an abstract superclass. You can take advantage of the

similarities and declare all the graphic objects to inherit from the same abstract parent object (for

example, GraphicObject) as shown in the following figure.

Classes Rectangle, Line, Bezier, and Circle Inherit from GraphicObject

First, you declare an abstract class, GraphicObject, to provide member variables and methods

that are wholly shared by all subclasses, such as the current position and

the moveTo method. GraphicObject also declares abstract methods for methods, such

as draw or resize, that need to be implemented by all subclasses but must be implemented in

different ways. The GraphicObjectclass can look something like this:

abstract class GraphicObject {

 int x, y;

 ...

 void moveTo(int newX, int newY) {

 ...

 }

 abstract void draw();

 abstract void resize();

}

92
`

Each nonabstract subclass of GraphicObject, such as Circle and Rectangle, must provide

implementations for the draw and resize methods:

class Circle extends GraphicObject {

 void draw() {

 ...

 }

 void resize() {

 ...

 }

}

class Rectangle extends GraphicObject {

 void draw() {

 ...

 }

 void resize() {

 ...

 }

}

Visibility control

The visibility modifiers are also known as access modifiers. Java provides three types of

visibility modifiers: public, private and protected.

Public modifier

The members, methods and classes that are declared public can be accessed from anywhere. This

modifier doesn’t put any restriction on the access.

public access modifier example in java

Lets take the same example that we have seen above but this time the method addTwoNumbers()

has public modifier and class Test is able to access this method without even extending the

Addition class. This is because public modifier has visibility everywhere.

Addition.java

93
`

package abcpackage;

public class Addition

{

 public int addTwoNumbers(int a, int b)

 {

 Return a + b;

 }

Test.java

package xyzpackage;

import abcpackage;

class Test

{

 public static void main(String args[])

 Addition obj = new Addition();

 System.out.println(obj.addTwoNumbers(100, 1);

}
}

Output

101

Private access modifier
The scope of private modifier is limited to the class only.

1. Private Data members and methods are only accessible within the class

2. Class and Interface cannot be declared as private

3. If a class has private constructor then you cannot create the object of that class from

outside of the class.

94
`

Private access modifier example in java

This example throws compilation error because we are trying to access the private data member

and method of class ABC in the class Example. The private data member and method are only

accessible within the class.

class ABC

{

private double num = 100;

private int square(int a){

return a * a;

}

}

public class Example

{

 public static void main(String args[])

 ABC obj = new ABC();

 System.out.println(obj.num);

 System.out.println(obj.square(10));

}
}

Out put

Compile – time error

Protected access modifier

Protected data member and method are only accessible by the classes of the same package and

the subclasses present in any package. You can also say that the protected access modifier is

similar to default access modifier with one exception that it has visibility in sub classes.

95
`

Classes cannot be declared protected. This access modifier is generally used in a parent child

relationship.

Protected access modifier example in Java

In this example the class Test which is present in another package is able to call

the addTwoNumbers() method, which is declared protected. This is because the Test class

extends class Addition and the protected modifier allows the access of protected members in

subclasses (in any packages).

Addition.java

package abcpackage;

public class Addition

{

 protected int adTwoNumbers(int a, int b)

 {

 return a + b;

 }

Test.java

package xyzpackage;

import abcpackage;

class Test Extends Addition

{

 public static void main(String args[])

 Addition obj = new Addition();

 Test obj = new Test();

 System.out.println(obj.addTwoNumbers(100, 211);

}
}

96
`

Out put

311

The scope of access modifiers in tabular form

 Class Package Subclass(same

package)
Subclass(different
package)

Outside class

Public yes yes yes yes Yes
Protected Yes yes yes yes No
Default yes yes yes Yes No
Private yes No No No No

3.3. Arrays

 An array is a collection of similar type of elements which have a contiguous memory location.

Java array is an object which contains elements of a similar data type. Additionally, The

elements of an array are stored in a contiguous memory location. It is a data structure where we

store similar elements. We can store only a fixed set of elements in a Java array. Array in Java is

index-based, the first element of the array is stored at the 0th index, 2nd element is stored on 1st

index and so on

Unlike C/C++, we can get the length of the array using the length member. In C/C++, we need to

use the sizeof operator. In Java, array is an object of a dynamically generated class. Java array

inherits the Object class, and implements the Serializable as well as Cloneable interfaces. We can

store primitive values or objects in an array in Java. Like C/C++, we can also create single

dimensional or multidimensional arrays in Java. Moreover, Java provides the feature of

anonymous arrays which is not available in C/C++.

97
`

Advantages

o Code Optimization: It makes the code optimized, we can retrieve or sort the data

efficiently.

o Random access: We can get any data located at an index position.

Disadvantages

o Size Limit: We can store only the fixed size of elements in the array. It doesn't grow its

size at runtime. To solve this problem, collection framework is used in Java which grows

automatically.

Types of arrays in Java

There are two type of arrays in Java

o Single Dimensional Array
o Multidimensional Array

3.3.1. One Dimensional Arrays

In regular terms, it is the length of something. Similarly, as far as an array is

concerned, one dimension means it has only one value per location or index. One-

dimensional array in Java programming is an array with a bunch of values having been

declared with a single index.

Syntax to declare an array

Datatype[] arrayname;

Creation/Instantiation of an Array

Arrayname = new datatype[size];

Example

int num[] = {2,2,5,2,5,6};

98
`

1. Consider the below example for declare, instantiate, initialize of array

class Testarray{

public static void main(String args[]){

int a[]=new int[5];//declaration and instantiation

a[0]=10;//initialization

a[1]=20;

a[2]=70;

a[3]=40;

a[4]=50;

//printing array

for(int i=0;i<a.length;i++)//length is the property of array

System.out.println(a[i]);

}}

Out put

10

20

70

40

50

2. Java program to illustrate the use of declaration instantiation and initialization of java array in
a single line

99
`

class Testarray1{
public static void main(String args[]){

int a[]={33,3,4,5};//declaration, instantiation and initialization

//printing array
for(int i=0;i<a.length;i++)//length is the property of array
System.out.println(a[i]);

}
}

Out put

33

3

4

5

3.3.2. Two Dimensional Array

The elements of a 2D array are arranged in rows and columns, and the new operator for 2D

arrays specifies both the number of rows and the number of columns. For example, int[][]

A; A = new int[3][4]; This creates a2D array of int that has 12 elements arranged in 3 rows

and 4 columns.

Syntax

datatype[] [] arrayname;
arrayname = new datatype[size][size];

Example

int [] [] a;
a= new int[3] [4];

consider example program for two dimensional array

class Testarray3{
public static void main(String args[]){

//declaring and initializing 2D array

100
`

int arr[][]={{1,2,3},{2,4,5},{4,4,5}};

//printing 2D array
for(int i=0;i<3;i++){
 for(int j=0;j<3;j++){
 System.out.print(arr[i][j]+" ");
 }
 System.out.println();
}

}}

Out put
1 2 3
2 4 5

4 4 5

3.4. Strings
String manipulation is the most common part of many Java programs. Strings represent sequence
of characters. The easiest way to represent a sequence of characters in Java is by using a
character array.
Example
Char [] ch = {‘j’,’a’,’v’,’a’};
String s = new String(ch);

Is same as

String s= “java”;

Java String class provides a lot of methods to perform operations on string such as compare(),

concat(), equals(), split(), length(), replace(), compareTo(), intern(), substring() etc.

The java.lang.String clasmplements Serializable, Comparable and CharSequence interfaces.

101
`

CharSequence Interface

The CharSequence interface is used to represent the sequence of characters. String, StringBuffer

and StringBuilder classes implement it. It means, we can create strings in java by using these

three classes

The Java String is immutable which means it cannot be changed. Whenever we change any

string, a new instance is created. For mutable strings, you can use StringBuffer and StringBuilder

classes.

There are two ways to create string object

1. By string literal

102
`

2. By new keyword

1. String literal

Java String literal is created by using double quotes. For Example:

String s = “welcome”;

Each time you create a string literal, the JVM checks the "string constant pool" first. If the

string already exists in the pool, a reference to the pooled instance is returned. If the string

doesn't exist in the pool, a new string instance is created and placed in the pool. For example:

String s1 = “welcome”;

String s2 = “welcome”;//it doesn’t create a new instance

In the above example, only one object will be created. Firstly, JVM will not find any string

object with the value "Welcome" in string constant pool, that is why it will create a new object.

After that it will find the string with the value "Welcome" in the pool, it will not create a new

object but will return the reference to the same instance.

2. New keyword

String s = new String(“welcome”); // creates two objects and one reference variable

In such case, JVM will create a new string object in normal (non-pool) heap memory, and the

literal "Welcome" will be placed in the string constant pool. The variable s will refer to the

object in a heap (non-pool).

Consider the following example for string in Java

public class StringExample{

public static void main(String args[]){

String s1="java";

char ch[]={'s','t','r','i','n','g','s'};

String s2=new String(ch);

String s3=new String("example");

System.out.println(s1);

System.out.println(s2);

System.out.println(s3);

}}

103
`

Out put

java

strings

examples

Java String class methods

The java.lang.String class provides many useful methods to perform operations on sequence of

char values.

No. Method Description

1 char charAt(int index) returns char value for the particular index

2 int length() returns string length

3 static String format(String format, Object...
args)

returns a formatted string.

4 static String format(Locale l, String format,
Object... args)

returns formatted string with given
locale.

5 String substring(int beginIndex) returns substring for given begin index.

6 String substring(int beginIndex, int
endIndex)

returns substring for given begin index
and end index.

7 boolean contains(CharSequence s) returns true or false after matching the
sequence of char value.

8 static String join(CharSequence delimiter,
CharSequence... elements)

returns a joined string.

9 static String join(CharSequence delimiter,
Iterable<? extends CharSequence>
elements)

returns a joined string.

10 boolean equals(Object another) checks the equality of string with the

104
`

given object.

11 boolean isEmpty() checks if string is empty.

12 String concat(String str) concatenates the specified string.

13 String replace(char old, char new) replaces all occurrences of the specified
char value.

14 String replace(CharSequence old,
CharSequence new)

replaces all occurrences of the specified
CharSequence.

15 static String equalsIgnoreCase(String
another)

compares another string. It doesn't check
case.

16 String[] split(String regex) returns a split string matching regex.

17 String[] split(String regex, int limit) returns a split string matching regex and
limit.

18 String intern() returns an interned string.

19 int indexOf(int ch) returns the specified char value index.

20 int indexOf(int ch, int fromIndex) returns the specified char value index
starting with given index.

21 int indexOf(String substring) returns the specified substring index.

22 int indexOf(String substring, int fromIndex) returns the specified substring index
starting with given index.

23 String toLowerCase() returns a string in lowercase.

24 String toLowerCase(Locale l) returns a string in lowercase using
specified locale.

25 String toUpperCase() returns a string in uppercase.

26 String toUpperCase(Locale l) returns a string in uppercase using
specified locale.

105
`

27 String trim() removes beginning and ending spaces of
this string.

28 static String valueOf(int value) converts given type into string. It is an
overloaded method.

3.5. Vectors

Java Vector class comes under the java.util package. The vector class implements a growable

array of objects. Like an array, it contains the component that can be accessed using an integer

index.

Vector is very useful if we don't know the size of an array in advance or we need one that can

change the size over the lifetime of a program.

Vector implements a dynamic array that means it can grow or shrink as required. It is similar to

the ArrayList, but with two differences-

o Vector is synchronized.

o The vector contains many legacy methods that are not the part of a collections framework

3.6. Wrapper classes

The wrapper class in Java provides the mechanism to convert primitive into object and object

into primitive.

Since J2SE 5.0, autoboxing and unboxing feature convert primitives into objects and objects

into primitives automatically. The automatic conversion of primitive into an object is known as

autoboxing and vice-versa unboxing.

Use of Wrapper classes in Java

Java is an object-oriented programming language, so we need to deal with objects many times

like in Collections, Serialization, Synchronization, etc. Let us see the different scenarios, where

we need to use the wrapper classes.

106
`

o Change the value in Method: Java supports only call by value. So, if we pass a

primitive value, it will not change the original value. But, if we convert the primitive

value in an object, it will change the original value.

o Serialization: We need to convert the objects into streams to perform the serialization. If

we have a primitive value, we can convert it in objects through the wrapper classes.

o Synchronization: Java synchronization works with objects in Multithreading.

o java.util package: The java.util package provides the utility classes to deal with objects.

o Collection Framework: Java collection framework works with objects only. All classes

of the collection framework (ArrayList, LinkedList, Vector, HashSet, LinkedHashSet,

TreeSet, PriorityQueue, ArrayDeque, etc.) deal with objects only.

The eight classes of the java.lang package are known as wrapper classes in Java. The list of eight

wrapper classes are given below:

Primitive Type Wrapper class

Boolean Boolean

Char Character

Byte Byte

Short Short

Int Integer

Long Long

Float Float

Double Double

3.7. Enumerated types

The Enum in Java is a data type which contains a fixed set of constants.

It can be used for days of the week (SUNDAY, MONDAY, TUESDAY, WEDNESDAY,

THURSDAY, FRIDAY, and SATURDAY) , directions (NORTH, SOUTH, EAST, and WEST),

107
`

season (SPRING, SUMMER, WINTER, and AUTUMN or FALL), colors (RED, YELLOW,

BLUE, GREEN, WHITE, and BLACK) etc. According to the Java naming conventions, we

should have all constants in capital letters. So, we have enum constants in capital letters.

Java Enums can be thought of as classes which have a fixed set of constants (a variable that does

not change). The Java enum constants are static and final implicitly. It is available since JDK 1.5.

Enums are used to create our own data type like classes. The enum data type (also known as

Enumerated Data Type) is used to define an enum in Java. Unlike C/C++, enum in Java is

more powerful. Here, we can define an enum either inside the class or outside the class.

Java Enum internally inherits the Enum class, so it cannot inherit any other class, but it can

implement many interfaces. We can have fields, constructors, methods, and main methods in

Java enum.

Points to remember for Java Enum

o Enum improves type safety

o Enum can be easily used in switch

o Enum can be traversed

o Enum can have fields, constructors and methods

o Enum may implement many interfaces but cannot extend any class because it internally

extends Enum class

class EnumExample1{

public enum Season { WINTER, SPRING, SUMMER, FALL }

public static void main(String[] args) {

for (Season s : Season.values())

System.out.println(s);

}}

108
`

Out put

WINTER

SPRING

SUMMER

FALL

3.8. Summary

1. Objects have states and behaviors. Example: A dog has states - color, name, breed as well as

behaviors – wagging the tail, barking, eating. An object is an instance of a class.

2. A class can be defined as a template/blueprint that describes the behavior/state that the

objects of its type support.

3. Method overloading: Method Overloading is a feature that allows a class to have more than

one method having the same name, if their argument lists are different.

4. Method overriding: Method Overriding is a feature that allows a subclass or child class to

provide a specific implementation of a method that is already provided by one of its super-

classes or parent classes.

5. Inheritance is the process by which objects of one class acquire the properties of another

class. It provides code reusability.

6. Final keyword is used in different contexts. First of all, final is a non-access modifier

applicable only to a variable, a method or a class.

7. An array is a collection of similar type of elements which have a contiguous memory

location.

8. String manipulation is the most common part of many Java programs. Strings represent

sequence of characters. The easiest way to represent a sequence of characters in Java is by

using a character array.

9. The Enum in Java is a data type which contains a fixed set of constants.

10. The java.lang package are known as wrapper classes in Java.

109
`

3.9. SAQ

1. Distinguish between a class and an object?

2. Explain the terms i) static ii) final

3. Name and explain any three methods that the object class defines?

4. Explain string class in Java? Give suitable examples for creating objects of string class?

5. Explain arrays in Java by giving suitable examples?

6. List the difference between run time polymorphism and dynamic polymorphism.

7. Explain polymorphism in detail?

110
`

Unit – IV Interfaces

4.0. Structure

4.1. Objective

4.2. Interfaces: Multiple Inheritances

4.3. Extending Interfaces

4.4. Implementing Interfaces

4.5. Accessing Interface variables

4.6. Summary

4.7. SAQ

4.1. Objective

In this unit we discuss about interfaces. How interfaces can be implemented for multiple

inheritances. How to use extends and implements key words.

4.2. Interfaces: Multiple Inheritances

In the previous units we come across classes and how they can be inherited by other classes.

Even about various form of inheritance and pointed out that java does not support multiple

inheritance. That is, classes in Java cannot have more than one superclass. For instance, a

definition given below is not permitted in Java.

 Class A extends B extends C

 {

 }

However, the designer of Java could not overlook the importance of multiple inheritance. A large

number of real-life applications require the use of multiple inheritance whereby we inherit

methods and properties from several, distinct classes. Since C++ like implementation of

multiple inheritance proves difficult and adds complexity to the language, Java provides an

111
`

alternate approach know as Interfaces to support the concept of multiple inheritance. Although a

Java class cannot be a subclass of more than one superclass, it can implement more than one

interface, thereby enabling us to create classes that build upon other classes without the problems

created by multiple inheritance.

Declaring interfaces

An interface is declared by using the interface keyword. It provides total abstraction; means all

the methods in an interface are declared with the empty body, and all the fields are public, static

and final by default. A class that implements an interface must implement all the methods

declared in the interface.

Syntax

Interface<interface_name>

{

 //declare constant fields

// declare methods that abstract

// by default

}

Interface is the key word and Inteface_name is any valid java variable. Variable are declared as

following:

 Static final type variablename = value;

Note that all variables are declared as constants. Methods declaration will contain only a list of

methods without any body statements. Consider the following example

return-type methodname1 (parameter_list);

Consider the following example with two variables and one method

interface Item
{
 static final int code = 1001;
 static final String name = “fan”;
 void display();
}

112
`

The relationship between classes and interfaces

As shown in the figure given below, a class extends another class, an interface extends another

interface, but a class implements an interface.

4.3. Extends Interface

When one interface inherits from another interface, that sub-interface inherits all the methods

and constants that its super interface declared. In addition, it can also declare new abstract

methods and constants. To extend an interface, you use the extends keyword just as you do in the

class definition. Unlike a subclass which can directly extend only one subclass, an interface can

directly extend multiple interfaces.

syntax

[public] interface InterfaceName extends interfacel[, interface2, , interfaceN]

{//interface body}

Here, the name of the interface is InterfaceName. The extends clause declares that this interface

extends one or more interfaces. These are known as super interfaces and are listed by name.

Each super interface name is separated by commas.

Now let us consider a program that demonstrates how interface extends another interface

interface Interface1
{
 public void f1();
}
 //Interface2 extending Interface1
interface Interface2 extends Interface1
{
 public void f2();

113
`

}
class x implements Interface2
{
 //definition of method declared in interfacel
 public void f1()
 {
 System.out.println("Contents of Method f1() in Interface1");
 }
 public void f2()
 {
 System.out.println("Contents of Method f2() in Interface2");
 }
 public void f3()
 {
 System.out.println("Contents of Method f3() of Class X");
 }
}
 class ExtendingInterface
{
 public static void main(String[] args)
 {
 Interface2 v2; //Reference variable of Interface2
 v2 = new x(); //assign object of class x
 v2.f1();
 v2.f2();
 x xl=new x();
 xl.f3();
 }
}

Out put

contents of Method f1() in interface1

contents of Method f2() in interface2

contents of Method f3() of Class x

4.4. Implementing Interfaces

A class declares all of the interfaces that it implements in its class declaration. To declare that

your class implements one or more interfaces, use the keyword implements followed by a

comma-delimited list of the interfaces implemented by your class.

For example, consider the Collection interface introduced on the previous page. Now, suppose

that you were writing a class that implemented a FIFO (first in, first out) queue. Because a FIFO

114
`

queue object contains other objects it makes sense for the class to implement

the Collectioninterface. The FIFOQueue class would declare that it implements

the Collection interface like this:

class FIFOQueue implements Collection {
 . . .
 void add(Object obj) {
 . . .
 }
 void delete(Object obj) {
 . . .
 }
 Object find(Object obj) {
 . . .
 }
 int currentCount() {
 . . .
 }
}
By declaring that it implements the Collection interface, the FIFOQueue class guarantees that it

provides implementations for the add, delete, find, and currentCount methods. By convention,

the implements clause follows the extends clause if it exists.

4.5. Accessing Interface variables

An interface does not have instance variables. The members of an interface are always declared

as static and final, that the variable cannot be modified by the methods in the class. Such

variables will be inherited by the class that implements the interface.

Consider the following example for accessing interface variables

interface Data
{
 int data1 = 50;
int data2 = 100;
}
class ShowData implements Data
{
void interface Values()
{
 System.out.println(“data1= ” + data1);
 System.out.println(“data1= ” + data1);
}
void modifyInterfaceValues()
{

115
`

data1+=20;
data2+=40;
}
}
public class Javaapp
{
 public static void main(String[] args)
{
 System.out.println(“data1= ” + Data.data1);
 System.out.println(“data2= ” + Data.data2);
ShowData obj = new ShowData();
obj.interfaceValues();
obj.modifyInterfaceValues();
obj.interfaceValues();
}
}

4.6. Summary

1. A class that implements interface must implements all the methods in interface. All the

methods are public and abstract. And all the fields are public, static, and final. It is used to

achieve multiple inheritance.

2. A class implements an interface, thereby inheriting the abstract methods of theinterface.

... Interfaces are more flexible, because a class can implement multipleinterfaces.

Since Java does not have multiple inheritance, using abstract classes prevents your users

from using any other class hierarchy.

3. An interface is a Java programming language construct, similar to an abstract class, that allows

you to specify zero or more method signatures without providing the implementation of those

methods.

4.7. SAQ

1. How interfaces are appropriate in Java?

2. Explain interfaces in Java with suitable example?

3. Write a Java program that implements interfaces?

4. What is multiple inheritances and how Java supports multiple inheritance?

116
`

Unit – V Packages

5.0. Structure

5.1. Objective

5.2. Packages

 5.2.1 Java API packages

5.3. Using system packages

5.4. Naming conventions

5.5. Creating packages

5.6. Accessing packages

5.7. Using a Package

5.8. Summary

5.9. SAQ

5.1. Objective

The main objective of this unit is to learn what are packages? How to create and use packages in

the program without physically copying them into the program under development.

5.2. Packages

The main features of OOPs is its ability to reuse the code already created. One way of achieving

this is by extending the classes and implementing the interfaces that already studied in the

previous units. It is limited to reuse the classes within a program. Suppose if we need to use

classes from other programs without physically copying them into the program under

development, this can be accomplished in Java by using the concept of PACKAGES. Packages

are similar to the of class libraries in other languages. The concept of reusability in Java is

implemented by using packages. The following are the benefits of package

1. The classes contained in the packages of other programs can be easily reused.

2. In packages, classes can be unique compared with classes in other packages. That

is, two classes in two different packages can have the same name. they may be

117
`

referred by their fully qualified name, comprising the package name and the class

name.

3. Packages provide a way to hide classes thus preventing other programs or

packages from accessing classes that are ment for internal use only.

4. Packages also provide a way for separating design from coding. First we can

design classes and decide their relationships, and then we can implement the Java

code needed for the methods. It is possible to change the implementation of any

method without affecting the rest of the design.

Most of the applications need to use different sets of classes, one for the internal

representation of out program’s data and other for external presentation purposes.

We may have to build our own classes for handling our data and use existing class

libraries for designing user interfaces. Java packages are therefore classified into two

types

1. Java API packages

2. User defined packages

5.2.1. Java API packages

Java API provides a large number of classes grouped into different packages according to

functionality. Most of the time we use the packages available with the Java API which can be

see in the below figure.

Frequently used API packages

Java

util io Lang applet net awt

118
`

PACKAGE
NAME EXAMPLE CLASSES FUNCTIONALITY (PURPOSE)

java.lang
System, String, Object, Thread,
Exception etc.

These classes are indispensable for
every Java program. For this reason,
even if this package is not imported,
JVM automatically imports.

java.util

These are called as utility (service)
classes and are used very
frequently in coding.

java.io

FileInputStream,
FileOutputStream, FileReader,
FileWriter, RandomAccessFile,
BufferedReader, BufferedWriter
etc.

These classes are used in all I/O
operations including keyboard input.

java.net

URL, ServerSocket, Socket,
DatagramPacket, DatagramSocket
etc.

Useful for writing socket
programming (LAN communication).

java.applet
AppletContext, Applet, AudioStub,
AudioClip etc

Required for developing applets that
participate on client-side in Internet
(Web) programming.

java.awt
Button, Choice, TextField, Frame,
List, Checkbox etc.

Essential for developing GUI
applications.

java.awt.event
MouseListener, ActionListener,
ActionEvent, WindowAdapter etc.

Without these classes, it is impossible
to handle events generated by GUI
components

java.sql
DriverManager, Statement,
Connection, ResultSet etc

Required for database access in JDBC
applications.

Table: Predefined Packages Java Java API

5.3. Using System Packages

The packages are organized in a hierarchical structure as given below. 02This shows that the

package named ‘java’ contains the package ‘awt’, which in turn contains various classes required

for implementing graphical user interface.

119
`

 java

Hierarchical representation of java.awt package

There are two ways of accessing the classes stored in a package. The first approach is to use the

fully qualified class name of the class that we want to use. This is done by using the package

name containing the class and then appending the class name to it using the dot operator. For

example, if we want to refer to the ‘color’ in the awt package, then we may do so as follows:

java.awt.Color

Notice that awt is as package within the package java and the hierarchy is represented by

separating the levels with dots. This approach is perhaps the best and easiest one if we need to

access the class only once or when we need not have to access any other classes of the package.

But in many situations, we might want to use a class in a number of places in the program or we

may like to use many of the classes contained in a package. We may achieve this easily as

follows:

import packagename.classname;

or

awt

 :
 :
 :
 :
 :

color

graphics

font

image

package containing
awt

package containing
classes

classes containing
methods

120
`

import packagename;

These are known as import statements and must appear at the top of the file, before any class

declarations, import is a keyword. The first statement allows the specified class in the specified

package to be imported. For example

import java.awt.Color;

Import the class Color and therefore the class name can now be directly used in the program.

There is no need to use the package name to qualify the class. the second statement imports

every class contained in to specified package. For example, the statement

import java.awt.*;

5.4. Naming conventions

Packages can be named using the standard java naming rules. By convention, however,

packages begin with lowercase letters. This makes it easy for users to distinguish package names

from class names when looking at an explicit reference to a class. we know that all class names,

again by convention, begin with an uppercase letter. For example, look at the following

statement:

Double y = java. Lang. Math. sqrt(x);

This statement uses a fully qualified class name Math to invoke the method sqrt(). Note that

methods begin with lowercase letters. Consider another example

 java. Awt.Point pts [];

this statement declares an array of ‘Point’ type objects using the fully qualified class name. every

package name must be unique to make the best use of packages. Duplicate name will cause ru-

time errors. Since multiple users work on Internet, duplicate package names are unavoidable.

Package
name

Class
name

Method
name

121
`

Java designers have recognized this problem and therefore suggested a package naming

convention that ensures uniqueness. This suggests the use of domain names as prefix to the

preferred package names. For example

cbe.psg.mypackage

Here cbe denotes city name and psg denotes organization name. Remember that we can create a

hierarchy of packages with in packages by separating by levels with dots.

5.5. Creating packages

Let us see now how to create our own packages. We must first declare the name of the package

using the package keyword followed by name. This must be first statement in java source file

(except for comments and white spaces). Then we define a class, just as we normally define a

class. Consider the following example

package firstPackage; // package declaration

public class FirstClass // class definition

{

 ----------------- (body of class)

}

Here the package name is ‘firstPackage’. The class ‘FirstClass’ is now considered a part of this

package. This listing would be saved as a file called FirtsClass.java, and located in a directory

named firstPackage. When the source file is compiled, java will create a .class file and store it in

the same directory. Remember that the .class file must be located in a directory that has the same

name as the package, and this director should be a subdirectory of the directory where classes

that will import the packages located.

Let us consider another example of java package. The package keyword is used to create a

package in java.

//save as simple.java

Package mypack;

Public class simple

122
`

{

 Public static void main(String args[])

{

 System.out.println(“welcome to package”);

}

}

For compile java package

If you are not using any IDE, you need to follow the syntax given below

Javac –d directory javafilename

For example

Javac –d.simple.java

The -d switch specifies the destination where to put the generated class file. You can use any

directory name like /home (in case of Linux), d:/abc (in case of windows) etc. If you want to

keep the package within the same directory, you can use . (dot).

How to run java package program

You need to use fully qualified name e.g. mypack.simple etc to run the class.

To compile: javac –d.simple.java

To run: java mypack.simple

Output: welcome to package

5.6. Accessing a package

In order to access a package we use the key word ’import’ this approach is discussed here. The

import statement when there are many references to a particular package or the package name is

too long and unwieldy. The same approaches can be used to access the user-defined packages as

well. The import statement can be used to search a list of packages for a particular class. the

general form of import statement for searching a class is as follows:

 import package1 [.package2] [.package3] . classname;

package1 is the name of the top level package, package2 is the name of the package that is inside

the package1 and so on. We can have any number of packages in a package hierarchy. Finall,

the explicit classname is specified and ended with semicolon(;). Consider the following example

 import firstPackage.secondPackage.myclass;

123
`

Here we can also denote a single package or hierarchy of packages as given in the below

example also.

 import packagename.*;

The star (*) indicates that the compiler should search this entire package hierarchy when it

encounters a class name. This implies that we can access all classes contained in the above

package directly.

5.7. Using a package

Let us now consider some simple programs that will use classes from other packages. The below

example shows a package name package1 containing a single class ‘classA’

package package1;

public class classA

{

 Public void displayA()

 {

 System.out.println(“class A”);

 }

}

This source file should be named classA.java and stored in the subdirectory package1 and stated

earlier. Now compile this java file. The resultant classA.class will be stored in the same

subdirectory. Now consider the listing below:

import package1.classA;

class packagetest1

{

 public static void main(String args[])

 {

 classA objectA = new classA();

 objectA.displayA();

 }

}

124
`

This listing shows a simple program that imports the class ‘classA’ form the package ‘package1’.

The source file should be saved as packagete1.java and then compiled. The source file and the

compiled file would be saved in the directory of which package1 was subdirectory. Now we can

run the program and obtain the results. During the compilation of ‘packagetest1.java the

compiler checks for the file classA.class in the package1 directory for information it needs, but it

does not actually include the code form classA.class in the file packagetest1.class. When the

packagetest1 program is run, java looks for the file packagetest1.class. and loads it using

something called class loader. Now the interpreter knows that it also needs the code in the file

classA.class and loads it as well.

Practicing examples based on packages

//PCKG1_ClassOne.java

package pckg1;

public class PCKG1_ClassOne{

int a = 1;
private int pri_a = 2;

protected int pro_a = 3;

public int pub_a = 4;

public PCKG1_ClassOne() {

System.out.println("base class constructor called");

System.out.println("a = " + a);

System.out.println("pri_a = " + pri_a);

System.out.println("pro_a "+ pro_a);

System.out.println("pub_a "+ pub_a);

}
}

The above file PCKG1_ClassOne belongs to package pckg1, and contains data members with all
access modifiers.

//PCKG1_ClassTwo.java

package pckg1;

125
`

class PCKG1_ClassTwo extends PCKG1_ClassOne {

PCKG1_ClassTwo() {

System.out.println("derived class constructor called");

System.out.println("a = " + a);

II accessible in same class only

II System.out.println("pri_a = " + pri_a);

System.out.println("pro_a "+ pro_a);
System.out.println("pub_a =” + pub_a);

}

}

The above file PCKG1_ClassTwo belongs to package pckg1, and extends PCKG1_ClassOne,
which belongs to the same package.

//PCKG1_ClasslnSamePackage

package pckg1;

class PCKG1_ClassInSamePackage {

PCKG1_ClassInSamePackage() {

PCKG1_ClassOne co = new PCKG1_ClassOne();

System.out.println("same package class constructor called");

System.out.println("a = " + co.a);
II accessible in same class only

II System.out.println("pri_a = " + co.pri_a);

System.out.println("pro_a "+ co.pro_a);

System.out.println("pub_a = " + co.pub_a);

}

}

The above file PCKG1_ClassInSamePackage belongs to package pckg1, and having an instance
of PCKG1_ClassOne.

package PCKG1;

//Demo package PCKG1

126
`

public class DemoPackage1 {

public static void main(String ar[]) {

PCKG1_ClassOne obl = new PCKG1_ClassOne();

PCKG1_ClassTwo ob2 = new PCKG1_ClassTwo();

PCKG1_ClassInSamePackage ob3 = new PCKG1_ClassxnSamePackage();

}

}

The above file DemoPackageI belongs to package pckgI, and having an instance of all classes in
pckg1.

package pckg2;

class PCKG2_ClassOne extends PCKG1.PCKG1_ClassOne {

PCKG2_ClassOne() {

System.out.println("derived class of other package constructor

called");

II accessible in same class or same package only

II System.out.println("a = " + a);

II accessible in same class only

II System.out.println("pri_a = " + pri_a);

System.out.println("pro_a = " + pro_a);
System.out.println("pub_a = " + pub_a);

}

}

The above file PCKG2_ClassOne belongs to package pckg2. extends PCKG I_ClassOne, which
belongs to PCKG1, and it is trying to access data members of the class PCKGI_ClassOne.

IIPCKG2_ ClassInOtherPackage

package pckg2;

class PCKG2_ClassInOtherPackage {

PCKG2_ClassInOtherpackage() {

PCKG1.PCKG1_ClassOne co = new PCKG1.PCKG1_ClassOne();

127
`

System.out.println("other package constructor");

II accessible in same class or same package only

II System.out.println("a ,= " + co.a);

II accessible in same class only

II System.out.println("pri_a = " + co.pri_a);

II accessible in same class, subclass of same or other package

II System.out.println("pro_a = " + co.pro_a);
System.out.println("pub_a = " + co.pub_a);

}

}

The above file PCKG2_ClassInOtherPackage belongs to package pckg2, and having an instance
of PCKG LClassOne of package pckg I, trying to access its some data members.

II Demo package pckg2.

package pckg2;

public class DemoPackage2 {

public static void main(String ar[]) {

PCKG2_ClassOne obl = new PCKG2_ClassOne();

PCKG2_ClassInOtherPackage ob2 = new PCKG2_ClassInOtherPackage();
}

}

5.8. Summary

1. Java package. A Java package organizes Java classes into namespaces, providing a unique

namespace for each type it contains.

2. Classes in the same package can access each other's package-private and protected

members.

3. A Package is a collection of related classes.

4. It helps organize your classes into a folder structure and make it easy to locate

and use them. More importantly, it helps improve re-usability.

128
`

5. Each package in Java has its unique name and organizes its classes and interfaces into a

separate namespace, or name group

6. Programmers can define their own packages to bundle a group of classes/interfaces, etc.

7. It is a good practice to group related classes implemented by you so that a programmer

can easily determine that the classes, interfaces, enumerations, and annotations are related

5.9. SAQ

1. What are packages? Discuss its access modifiers?

2. How are packages created in Java? Give example?

3. How are sub packages are created and accessed?

129
`

Unit – VI

6.0. Structure

6.1. Objective

6.2. Basics of Web Design

6.3. Elements of Web

6.4. Web Site Architecture

6.5. Designing a web site

 6.5.1. Web design process and Web site design process

 6.5.2. Elements of Web site design

6.9. Web Page and Layout

6.10. Summary

6.11. SAQ

6.1. Objective
The aim of this chapter is how to design a web page.

6.2. Basics of Web Design

Web page design is a process of conceptualization, planning, modeling, and execution of

electronic media content delivery via Internet in the form of technologies (such as markup

languages) suitable for interpretation and display by a web browser or other web-based graphical

user interfaces (GUIs).

The intent of web design is to create a web site (a collection of electronic files residing on one or

more web servers) that presents content (including interactive features or interfaces) to the end

user in the form of web pages once requested. Such elements as text, forms, and bit-mapped

images (GIFs, JPEGs, PNGs) can be placed on the page using HTML, XHTML, or XML tags.

Displaying more complex media vector graphics, animations, videos, sounds.

130
`

Web design

Beyond visuals and technology considerations the creation and organization of content in Web

sites is the most important aspect of Web design. The four primary aspects of the Web design are

content, technology, visuals and economics. The primary purpose of content is to inform or

perhaps persuade users. The point of using technology on a Web site is to implement the

function of the site. The visuals provide the form for the site. Lastly, for most sites we need to

consider the economic ramifications of building the site. The amount of influence of each

particular aspect of Web sites varies based on the type of site being built. For example, a

personal home page generally doesn’t have the economic considerations of a shopping site. An

intranet for a manufacturing company may not have the visual considerations of a public Web

site promoting an action movie, and so on.

The Web Design Pyramid:

It is useful to think of Web sites metaphorically as pyramids, as shown below:

Fig: Web pyramids: the facets of Web design

Content provides the bricks we use to build the pyramid, but the foundation rests solidly on both

visuals and technology, with a heavy reliance on economics to make our project worth doing.

Even if we are experts able to construct a beautiful and functional Web site, our users may look

USERS DESIGNER

CONTENT
FORMS
(Visulas)

PURPOSE
(Economics)

FUNCTION
(Technology)

CC

131
`

at our beautiful construction with puzzlement. Designers, or their employers, often spend more

time considering their own needs and wants than those of the site’s visitors.

Building Web Sites:

Building a Web site can be very difficult. While some of the core technologies like

HTML are easy enough to master, developers seem to make numerous mistakes. The main

reasons for this are a lack of developer experience; a poorly defined process, and unrealistic

schedules. Because of time constraints or inexperience, designers tend to start from one extreme

or another, and then jump right to implementation without considering the preceding steps.

Web Development Process Model:

 Technology and visuals provide the base of the Web design pyramid; both are necessary

and must relate directly to the purpose of the site. Instead of implementing first and asking

questions later, it makes more sense to discuss the purpose of the site and then determine how to

accomplish any defined goals. This top-down approach to Web site development is fairly well

understood. Many disciplines such as software engineering have defined a process model, the

most famous being the waterfall approach, which describes the software life cycle from project

planning to eventual release and maintenance. The process is split into a variety of steps that

guide the developer from general requirements to specific 0.implementation. An example of the

stages in the waterfall process is as shown below:

The Waterfall Model

132
`

While building Web sites the following rules must be kept in mind:

1. YOU ARE NOT THE USER

2. USERS ARE NOT DESIGNERS

3. DESIGN FOR THE COMMON USER, BUT ACCOUNT FOR DIFFERENCES

4. A SITE’S EXECUTION MUST BE CLOSE TO FLAWLESS

5. KNOW AND RESPECT THE WEB AND INTERNET MEDIUM CONSTRAINTS

6. WEB SITES SHOULD RESPECT GUI PRINCIPLES WHERE APPROPRIATE

7. NAVIGATION IS ONLY A MEANS TO AN END RESULT

8. VISUALS WILL HEAVILY INFLUENCE THE USER’S INITIAL PERCEPTION

OF A SITE’S VALUE

Problem definition
Concept exploration

con

Implementation and Unit
testing

Integration and System
testing

Release, operation and
Maintenance

Design
Prototyping
Prototyping

Requirements analysis
Specification
Specification

133
`

9. THE SITE’S TAKE-AWAY VALUE IS INFLUENCED BY VISUALS, CONTENT,

TECHNOLOGY, USABILITY, AND GOAL ACCOMPLISHMENT

10. DO NOT INVENT INTERFACES TO BUILD BRAND

11. THERE IS NO FORM OF CORRECT WEB DESIGN THAT FITS EVERY SITE

12. CONTROL SHOULD BE GIVEN OR AT LEAST APPEAR TO BE GIVEN TO

THE USER

13. WHAT YOU SEE IS WHAT YOU WANT (WYSIWYW)

To put in a nutshell, Web design is a multidisciplinary pursuit that consists of four primary

components: content, form, function, and purpose. However, agreement as to exactly how these

components mix together varies from person to person as well as project to project. While good

Web design is hard to define, there is certainly an understanding of what not to do. The field has

a great deal to learn from other disciplines, particularly from the intersection of graphical

interface design and traditional print design. If the designer keeps the user in mind at all times,

many of the most serious design errors can be avoided. Furthermore, designers should respect the

restrictions of the medium, as well as any emerging conventions regardless of what users may

think they want.

6.3. Elements of Web

Here are the five elements to web design:

1) Content

There's no denying that 'Content is King'. It plays a massive role in Search Engine Optimisation

(SEO), and is one of the main reasons people visit your website. You really need to focus a great

deal of effort into creating first class content for your website, which should include videos,

relevant news/information and high-resolution imagery to make your website ‘stickier’. This will

ensure you keep your users on your website for longer.

2) Usability

Great usability will never be noticed by the end user, but bad usability instantly stands out. Your

website must be easily navigable, intuitive, accessible and mobile-friendly.

134
`

The user should know where they are on the website at all times and be able to find where they

want to go with little thought. They should also be able to access any page they need without

having to view the whole site.

Your site should try to anticipate what your visitors are thinking and help them to fulfill their

needs with as little effort as possible.

3) Aesthetics

In this day and age, having a visually impressive website across all devices is crucial. However,

you must maintain your brand image. Your website must reflect who you are as a business, and

visually connect with the audience.

The visual appeal of your website not only contributes to your brand awareness but also increase

your credibility.

4) Visibility

If you had the most aesthetically pleasing and user-friendly website on the web, it would still be

unsuccessful unless it could be found. Your presence and visibility through digital marketing

campaigns including SEO, social media and email marketing is vital to the success of your

website.

It’s important that you understand how to be found, what platforms to target and how to utilise

your content. Thousands of factors have an impact on where you appear within the search

engines, so make sure you have a plan in place!

5) Interaction

Your website must engage with your audience, hold their attention, direct them through the

stages of your website and finally encourage them to contact you.

6.4. Web site Architecture and site types
Just as there are many types of software there are many types of Web sites.

135
`

General Web Site Types

There are three general categories of Web sites.

1. Public Web sites: A public Web site, an Internet Web site, an external Web site, or simply a

Web site is one that is not explicitly restricted to a particular class of users.

2. Intranet Web sites: An intranet Web site is a site that is private to a particular organization,

generally run within a private network rather than on the Internet at large.

3. Extranet Web sites: An extranet site is a Web site that is available to a limited class of users,

but is available via the public Internet. The design considerations will vary dramatically between

the general Web site, as stated in the following table:

Design

Consideration
Intranets Extranets Public Sites

Information About

Users
High Medium Low

Capacity Planning Possible Usually possible
Difficult to

impossible

Bandwidth High Varies Varies greatly

Ability to Set

Technology
Yes Sometimes Rarely

Interactive Vs Static Sites

 Another way to classify sites is if they are interactive or static.

Interactive: An interactive site is one where the users of the site are able to interact directly

with the content on the site or with other users of the site.

136
`

Static: A static site one where content is relatively fixed in that the user is unable to affect the

look or scope of the date they view. In short, the visitor has minimal ability to interact with the

site’s content other than choosing the order in which to view content.

Dynamic Sites

 The more frequently the site changes, the more dynamic it could be thought to be.

Dynamic site: A dynamically generated site is one where the pages of the site are generated at

request or view time for the user.

The benefit of a dynamically generated site should be obvious since it presents content the way

the user probably wants it.

A site that is targeted to specific users and allows them to determine exactly what they want to

see is called a personalized page.

Personalized site: A personalized site is one where content is directly geared towards a

particular user, and the user generally can explicitly determine the content, look, or technology

contained within a page.

Site Structure

 There are two structural aspects to any Web site logical structure and physical structure.

A logical structure will describe documents that are related to other documents. The logical

structure defines the links between documents. However, the logical location of documents

within a site may not relate to the actual physical location of a document. A physical structure

describes where a document actually lives. A web site’s logical structure is more important to a

user than its physical structure. Do not expose physical site file structure, when possible. A site’s

logical document structure does not have to map to directly match physical structure.

Logical Site Organization Models

 There are four main logical organizational forms used in Web sites. They are Linear,

grid, hierarchy, and web. Choosing the correct site organization is important in making a site

usable.

137
`

Linear

 A linear form is the most familiar of all site structures because traditional print media

tend to follow this style of organization. For example, books are written in linear order so that

one page follows another. Presenting information in a linear fashion is often very useful when

discussing a step-by-step procedure.

Basic Linear

 A pure linear organization facilitates an orderly progression through a body of

information, as shown under:

Pure linear:

The linear style of organization provides a great deal of predictability in that the designer knows

exactly where the user will go next. Because there is really no choice but to move forward o

back, a user may find a linear form to be very restrictive.

Linear with alternatives

 A linear with alternatives organization simulates interactivity by user back to another

page within sequence as illustrated here:

Linear with alternatives

138
`

Though the pages are static and there is no dynamic generation of pages, to the user it appears

that there is some interactivity. Despite its appearance of choice, the linear with alternatives

structure preserves the general linear path through a document collection. Unfortunately, the

multiple path possibilities make preloading of pages more difficult with this form of site.

Linear with options

 A linear with options structure is good when the general path must be preserved, but

slight variations must also be accommodated, such as skipping particular pages. This type of

hypertext organization might be useful for an online survey where some users might skip certain

inapplicable questions. The basic idea of this site structure is shown below:

Linear with options

Linear with side trips

 A linear with side trips site organization allows controlled diversions. Although the user

might take a short side trip, the structure forces the user back to the main path, preserving the

original flow. A side trip to a linear progression is like a sidebar to a magazine article. Rather

than distracting the user too much from the main path, this bit of information enhances the

experience. However, when many side trips are added into the linear progression, the structure

begins to look like the common tree or hierarchy form. The general form of this site structure is

shown below:

139
`

Linear with side trips

Grid

 A grid is a dual linear structure that presents both a horizontal and a vertical relationship

between items. Because a grid has a spatial organization, it is good for collections of related

items. However, a pure grid structure is uncommon on the Web. When designed properly, a grid

provides horizontal and vertical orientation so the user may not feel lost within the site. While a

grid structure is highly regular and may be easy for a user to navigate, not many types of

information are uniform enough to lend themselves well to this organization style. The grid

structure is shown below:

Grid

140
`

Hierarchy

The most common hypertext structure on the web is the tree or hierarchy form. The hierarchy is

very important because it can be modified to hide or expose as much information as is necessary.

Hierarchies start with a root page that is often the home page of the site, which serves as a

landmark page and often looks much different than other pages in the site. Site landmarks such

as home pages are key to successful user navigation. From the home page, various choices are

presented. As the user clicks deeper into the site, the choices tend to get more and more specific

until eventually a destination, or leaf page, in the tree is reached. Because of this, trees tend to be

described by their depth and breadth.

Narrow Trees

 A narrow tree presents only a few choices but may require many mouse clicks to get to

the final destination. This organization emphasizes depth over breadth.

Narrow hierarchy

Wide Trees

A wide tree or wide hierarchy is based on a breadth of choices. Its main disadvantage is that it

may present too many options as pages have numerous choices emanating from them. While the

user only has to click once or twice to reach the content, the time spent hunting through all the

initial choices may be counterproductive.

Wide hierarchy

141
`

Web Trees

The reality of the Web is that the typical pure-tree structures are rarely used. In a pure tree, there

are no cross-links, and backtracking is often required to reach other parts of the tree. Consider if

a user is at page A in the structure below; to reach page B, they have to back up two levels and

then proceed forward. Trees may require backtrack

 While on the Web bakctracking is possible using the browser’s back button, links are often

added to pages so that users who reach a page not through its primary path can navigate the site.In

many cases pages are cross-linked using a navigation bar or explicit back-links to help users quickly

navigate the site structure.The back and cross links within the site increase the complexity greatly.In

this case, consider that only mian section pages are cross-linked.

A B

142
`

Full Mesh

A site that links every page to every other page could be considered to exhibit a structure caled a full

mesh. A full mesh for a site with five pages looks as shown below:

In a full mesh, the number of links is equal to the number of pages X (number of pages – 1). In

reality, most sites tend to use a partial mesh style with cross-links to only the most important pages.

Mixed Forms

In some cases, there will be a need to augment the hierarchy to allow choices to bubble up to the top.

This structure is called a mixed form or a mixed hierarchy, as the tree is the dominant form of the

structure. A mixed form is probably the most common form of the site organization used on the

Web. Though spatial organization is not as pronounced as in the other site structures, a hierarchy is

still generally evident in most mixed sites.

HOME

143
`

Mixed hierarchy

 Web Style

When too many cross-links, skip-aheads, and other augmentations are made to a structured

documentation collection, the form will become unclear to the user. When a collection of documents

appears to have no discernible structure, it is called a pure web as shown below:

144
`

A pure-web structure can be difficult to use because it lacks a clear spatial orientation. Though

information can be accessed quickly if the correct choice is made, it may be difficult to orient

oneself in a Web site with an unclear structure. Yet the benefit of a less structured form is that it

provides a great deal of expressiveness.

Users and Site Structures

While a linear structure may be easier for users to comprehend than a mixed tree or pure web,

users do not necessarily memorize the layout of the site or visualize a flowchart in their head as

they move around. The entry and exit are really the key milestones for the users. Therefore,

another way to categorize Web sites would be on the number of entry points to a site. When a

site exposes all documents with public URLs, it could be said to exhibit a porous structure. In

contrast, a site with a solid structure would be one that severely limits the entry pints to the site

to a few URLs or even single URL. The following figure presents the graphical representation of

porous, semi porous, and solid site structures.

The basic pros and cons of the two site forms are summarized in the below table:

Site Type Pros Cons

Porous form

Puts user in control.

Allows the user to enter any
URL directly or enter by

bookmark.

Decreases ability to change deep pages
without addressing outside linking.

Does not easily provide a common entry
point for announcement, setup, or

orientation information.

Solid form

Does not expose site
structure, making
modification and

maintenance easier.

Forces user to enter through
known points.

Makes tracking of users
more predictable.

Removes user from control.

May limit the effectiveness of outside
search engines.

145
`

Deep Vs. Shallow Sites Another way to characterize sites would be the number of clicks required

to reach a destination. In this regard the following points could be kept in mind:

1. Aim for a site-click depth of three.

2. Aim for positive feedback indicating progress towards a destination every click, with a maximum

of three clicks without feedback.

3. Even for wide-site structures, consider a range of 25-81 links per page when page links are ideally

clustered.

4. The more important the page, the more redundant links should be provided to it.

5. Redendant links in a site should be no more than 10-20 percent of a page’s total exit links.

Specific Types of Web Sites

 There are numerous ways to characterize sites, including their audience, their frequency of

change, or the structure. One very general way to categorize sites would be as commercial,

informational, entertainment, navigational, community, artistic, or personal. The general goals,

audience, and features of each type of site vary dramatically. Therefore, do no apply the same

design philosophy to each form.

Commercial Sites

 Commercial sites are those sites that are built primarily to support the business of some

organization. Generally, the primary audience of a commercial site is potential and current

customers of the organization. A secondary audience often includes potential and current

investors, potential employees, and interested third parties such as the news media or even

competitors. Common purpose for commercial sites includes:

1. Basic information distribution: The site is used to distribute information about products and

services provided by the organization.

2. Support: Portions of the site might be built to provide information to help existing customers

effectively use products or services provided by the organization.

146
`

3. Investor relations: A public company or one seeking outside investment might build a site or a

section within a site to distribute information about the current financial situation of the company

as well as future opportunities for investment.

4. Public relations: Many firms use their Web sites to distribute information to various

newsgathering organizations as well as provide general goodwill information to the community.

5. Employee recruiting: A web site is often used to post information about employment

opportunities and benefits of working for a company.

6. E-commerce: A growing number of commercial Web sites allow a visitor, whether an end

consumer or a business partner like a reseller, to conduct business directly on the web site.

Common facilities supported by e-commerce sites include transactions like ordering, order-status

inquiries, and account-balance inquiries.

The overriding purpose of any commercial site is to serve the user in a way that hopefully benefits

the company either directly or indirectly.

Informational

Government, educational, news, nonprofit organizations, religious groups, or various social-

oriented sites are often considered informational sites. The primary purpose of the site may be to

inform for reasons beyond causing a transaction to happen. About all that can be said is that the

audience of the site is someone who has an interest or requirement to view the information

provided.

Entertainment

Entertainment sites are generally commercial, but they bear special consideration. The purpose of

an entertainment site is simply to entertain the site’s visitors. Web sites that are built to entertain are

often required to break with convention to be successful Entertainment sites may find novelty or

surprise more useful than structure or consistency.

Navigational

A navigational site helps people fine their way on the Internet. These sites are called portals since

the sites serve as major hubs pointing to other destinations. Navigational sites would also include

search engines or site directories that are backbone of many portal sites.

147
`

A portal is a site that is generally a primary starting point for a user’s online journey and serves to

help people find information. Portals often attempt to provide as much information and serve as

many tasks for the user as possible to encourage them to stay or to al least continually revisit the

site.

Community

A community site is one whose purpose is to create a central location for members or a particular

community to congregate and interact. Community sites are very interactive and are often

dynamically generated and personalized. A community site is very informational in nature, not just

to find content that is interesting to them but also to interact with other like-minded individuals.

Artistic

An artistic site is a site that is purely the expression of the individual or artist. The purpose of the

site would be to inspire, enlighten, or entertain its viewers. In some cases, the site may simply be

the product of the artist just trying to express his or her feelings. They may not really care what the

viewer thinks of the site. As long as the site makes the artist happy, it is successful.

Personal

Similar to an artistic site, a personal often called a personal home page or just a home page is often

an expression of its creator. Personal pages may be built to inform friends or family, or they might

just be built to try to learn a new skill like HTML. The purpose of the personal page is to personify

the individual on the Web. However, Uses should consider that stating all your likes and dislikes

online in the form of a personal page is a direct-marketer’s dream. Profiles are easy to build from

such information and may result in highly targeted and potentially intrusive junk mail and junk

email.

Picking a site structure

The idea of picking the correct structure for a web site by organizing information into a collection

of pages is often called information architecture. Novice users prefer sites with predictable

structure and may put up with extra clicks or a lack of control to achieve a comfortable balance.

Power users or frequent site users want control and will favor structures that provide more

navigation choices. The key point of site structure is to make the sit easier for the user to navigate.

While structure can improve a site’s organization, users may not always be aware of a site’s form as

148
`

they navigate towards desired content or attempt to complete a particular task. So, any structure that

we choose for a site should help users navigate around and improve their likelihood of success.

6.5. Designing a web Site

The main purpose of any website is to deliver specific information or services in an organized and

user friendly manner. The success of the website is measured in terms of the number of visitors to

the site and the ease with which the visitors find the required information. An effective and efficient

website is highly influenced by how well interface is designed and managed. Keeping the scenario

in mind, one cannot ignore the importance of proper planning and designing considering the legal

rights and hosting the website in a reliable web hosting server.

6.5.1. Web design process and Web Site design process

Building a modern Web site can be challenging, so site builders should adopt a methodology or

process model to guide the development process and hopefully minimize risk, manage

complexity, and generally improve the end result. To help reduce the difficulty in construction

sites, we should adopt a process model that describes the various phases involved in Web site

development. Each step can then be carefully performed by the developer, using guidelines and

documentation along the way that tell the developer how to do things and ensure that each step is

carried out properly.

Basic Web Process Model

 The basic model starts with the big picture and narrows down to the specific steps

necessary to complete the site. In software engineering this model is called the waterfall model,

or sometimes the software lifecycle model, because it describes the phases in the lifetime of

software. Each stage in the waterfall model proceeds one after another until conclusion. The

model starts with a planning stage, then a design phase, then implementation and testing, and

ends with a maintenance phase. The actual number of steps and their names varies from person

to person, but a general idea of the waterfall model is shown below:

149
`

Fig. The Waterfall Model

The good thing about the pure waterfall approach is that it makes developers plan everything up

front. That is also its biggest weakness. Another problem is that this process doesn’t deal well

with change. However, the waterfall model for site design continues to be very popular because

it is both easy to understand and easy to follow. Furthermore, the distinct steps in the process

appeal to management as they can be easily monitored and serve as project milestones.

Modified Waterfall

 One important aspect of the waterfall model is that it forces planning up front. Because of

all the steps required in the process, many developers tend to rush through the early stages and

end up repeating them again later on. The process is so rigid that it doesn’t support much

Problem Definition/
Concept Exploration
Concept Exploration

Requirements
Analysis/Spectification

Design
Prototryping
Prototyping

Implementation & Unit
Testing

Integration & System
Testing

Release, Operation &
Maintenance

150
`

exploration and may cause unnecessary risk. One possible improvement is to spend more time in

the first few stages of the waterfall and iterate a few times, exploring the goals and requirements

of the site before entering into the design and implementation phase. Because of the cyclical

nature of this process, it has been dubbed the modified waterfall with whirlpool to relate to the

small whirlpools that are often found before a waterfall in nature. When you approach a project

with high degree of uncertainty, the modified waterfall with whirlpool approach is a good idea.

The various steps in modified waterfall model can be illustrated with the help of a figure as

shown below:

Fig: Modified waterfall with risk-analysis whirlpool

The Waterfall Model

Problem Definition/ Concept
Exploration

Requirements
Analysis/Specification

Design Prototyping

Prototyping

Implementation & Unit
Testing

Integration & System
Testing

Release, Operation &
Maintenance

“The Whirlpool Risk
Analysis”

151
`

Joint Application Development Model

 The last software development process model that makes sense for Web site development

is called joint application design or JAD. It is also called evolutionary prototyping because it

involves evolving a prototype site to its final form in a series of steps. Rather than creating a

mock site to test a theory, a prototype is built and shown to the user. The user then provides

direct feedback that is used to guide the next version of the prototype, and so on until the final

form is developed. The basic concept of JAD is shown in the following figure:

Fig: Joint application design in action

1. Developer talks to clients to understand requirements. Makes first prototype.

2. Client tries prototype and suggests changes

3. And extensions.

4. If OK, release.

152
`

3. Developer makes a new prototype. Return to step 2.

Many aspects of the JAD process model seem appropriate for Web development, particularly

when it is difficult to determine the specifics of the project. The process is very incremental as

compared to the large release approach of the waterfall model, so it also appears to be faster.

However, JAD can have some serious drawbacks. First, letting users see an unfinished site could

harm the relationship between the users and developer. Even when users want to actively

participate in guiding the project, we must always remember that users are not designers. This

guiding Web design principle should always be remembered as users may steer development off

course with unrealistic demands. Projects run in a JAD style are also difficult to budget for since

the number of revisions can’t be predicted. The core concept behind JAD is to build the wrong

site numerous times until the correct site falls out. Despite its drawbacks, JAD has its place in

Web development, particularly in maintenance projects.

Approaching a Web Site Project

 Site development rarely works in a consistent manner because of the newness of the field,

the significant time constraints, and the ever-changing nature of the Web projects. To guide

development, a process model should be adopted at the start of the project. If the site is brand

new or the addition is very complex, the waterfall model or the modified waterfall with

whirlpool model should be adopted. If the project is a maintenance project, is relatively simple,

or has many unknown factors, joint application design may make sense. Regardless of the

project, the first step is always the same. Set the overall goal for the project.

153
`

Goals and Problems

 As familiarity with the Web has grown, the reasons for having Web sites have become

clearer. Today, site goals have become important and are usually clearly articulated up front.

Coming up with a goal for a Web site isn’t difficult. The problem is refining it.

Brainstorming

 Generally, coming up with a goal statement is fairly straightforward. The largest problem

is keeping the statement concise and realistic. To determine goals, a brainstorming session is

often required. The purpose of a brainstorming session is simply to bring out as many possible

ideas about the site as possible.

Narrowing the Goal

 During the brainstorming session, all ideas are great. The point of the session is to

develop what might be called the wish list. A wish list is a document that describes all possible

ideas for inclusion in a site regardless of price, feasibility, or applicability. However, eventually

the wish list will have to be narrowed down to what is reasonable and appropriate for the site.

This can be a significant challenge with a site with many possible goals.

Audience

 The best way to narrow a goal is to make sure that the audience is always considered.

Consider asking some basic questions about the site’s users, such as:

 Where they are located?

 How old are they?

 What is their gender?

 What language they speak?

 How technically proficient are they?

 What kind of computer, connection to the Internet and browser would they

154
`

 probably use?

 Next, consider what the users are doing at the site:

 How did they get to the site?

 What do the users want to accomplish at the site?

 When will they visit the site?

 How long will they stay during a particular visit?

 From what pages will thy leave the site?

 When will they return to the site, if ever?

 While you might be able to describe the user from these questions, you should quickly

determine that your site would probably not have one single type of user with a single goal. For

most sites, there are many types of users, each with different characteristics and goals.

User profiling

 The best way to understand users is to actually talk to them. If possible, interview the

users directly. A survey may also be appropriate. From user interviews, surveys, or even just

thinking about users generally, you should attempt to create stereotypical but detailed profiles of

common users.

Requirements

 Based on the goals of the site and what the audience is like, the site’s requirements

should begin to present themselves. What kind of content will be required? What kind of look

should the site have? What types of programs will have to be built? And so on. Requirements

will begin to show site costs and potential implementation problems. If the requirements seem

excessive over the potential gain, then the goal stage should the revisited or question if the

audience was accurately defined.

155
`

The Site Plan

 Once a goal, audience, and site requirements have been discussed and documented, a

formal site plan should be drawn up. The site plan should contain the following sections:

1. Short goal statement: This section would contain a brief discussion to explain the overall

purpose of the site and it’s basic success measurements.

2. Detailed goal discussion: This section would discuss the site’s goals in detail and provide

measurable goals to verify the benefit of the site.

3. Audience discussion: This section would profile the users that would visit the site. It

describes both audience characteristics and the tasks the audience would try to accomplish at the

site.

4. Use scenario discussion: This section discusses the various task visit scenarios for the site’s

users. Start first with how the user will arrive at the site and then follow the visit to its

conclusion.

5. Content requirements: This section should provide a list of all text, images, and other media

required in the site.

6. Technical requirements: This section should provide an overview of the types of technology

the site will employ, such as HTML, JavaScript, CGI, Java, plug-ins, and so on.

7. Visual requirements: This section should outline basic considerations for interface design.

This section may outline some specifics such as font or color use, but many of the details of the

details of the site’s visuals will be determined later in the development process.

8. Delivery requirements: This section should indicate the delivery requirements, particularly

any hosting considerations. A basic discussion of how many users will visit the site. How many

pages will be consumed on a typical page, and the size of a typical page should be included in

this section.

9. Site structure diagram: This section should provide a site structure or flow diagram detailing

the various sections within a site. A site diagram will look something like the one shown below:

156
`

Fig: Typical site diagram

10. Staffing: This section should detail the resources required to execute the site. Measurements

can be in simple man-hours and should relate to each of the four staffing areas: content,

technology, visual design, and management.

11. Time line: The time line should show how the project would proceed using the staffing

estimates combined with the typical waterfall process.

12. Budget: A budget is primarily determined from the staffing requirements and the delivery

requirements. However, marketing costs or other issues such as content licensing could be

addressed in the budget.

Design Phase

 The design or prototyping stage brings form to the project. During this phase, both

technical and visual prototypes should be developed. The following rules are worth to consider

during this phase.

1. Always collect content before design if at all possible.

Balloons

HOME

PRODUCTS SITE MAP HELP JOBS NEWS ABOUT

Domes

Robots

PSVs

History
Releases

Events

Corporate

Production

157
`

2. Visual design should proceed in a top-down fashion from home page to sub section pages and

finally content pages.

3. Always consider the bordering effect of the browser window when developing visual

composites.

4. Don’t stick on to your design prototypes. Listen to your users and refine your designs.

The Mock Site

 After all design prototypes have been finalized, it is time to create the mock or alpha site.

Implementation of the mock site starts first by cutting a digital comp into its pieces and

assembling the pages using HTML and CSS. Once the mock site is assembled, the site should be

fully navigable but contain no content.

Beta Site Implementation

 Once the mock site is acceptable, it is time to actually implement the real site. Real

content should be placed in pages, and back-end components and interactive elements should be

integrated with the final visual design.

Testing

 Testing is key to a positive user takeaway value. Always remember the following design

rules:

1. Sites always have bugs, so test your site well.

2. Testing should address all aspects of a site, including content, visuals, function, and purpose.

The following are the basic aspects of Web testing:

1. Visual Acceptance Testing: Visual acceptance testing ensures the site looks the way it was

intended.

158
`

2. Functionality Testing: Most basic function of a page is to simply render onscreen. However,

most sites contain at least basic functions such as navigation. Make sure to check every link in a

site and rectify any broken links.

3. Content Proofing: Make sure content is all in place and that word usage is consistent. And

always remember to check the spelling.

4. System and Browser Compatibility Testing: System and browser restrictions have been

respected during development, but this must be verified during testing. Make sure the site works

under the specified browsers.

5. Delivery Testing: Check to make sure the site is delivered adequately. Try browsing the site

under real user conditions.

6. User Acceptance Testing: User acceptance testing should be performed after the site appears

to work correctly. This testing is also called beta testing. Do not perform this type of testing until

the more obvious bugs have been rectified, as stated by the following rule:

 User test is the most important form of testing and should be performed last.

Release and Beyond

 Once the site is ready to be released, observe the site in action. Consider the following

rule in this regard:

Site development is an ongoing process that includes the stages as plan, design, develop, release,

and repeat. After adequate testing overtime maintenance and continued vigilance will be required

otherwise your finely crafted site will begin to degrade.

6.6. Elements of web site design

Here are seven key elements of modern web design:

 A Strong, but Limited, Color Palette: This might sound rudimentary, but color schemes and

color usage are very important when it comes to modern web design. A strong color palette will

help create cohesiveness between everything your business puts out. Plenty of White Space: This

goes along with the last modern website design element, but white space is also very attractive. It

doesn't necessarily even have to be white.

159
`

White space is a term used for the amount of "empty" space that acts as a buffer between all the

elements on your page, including copy, sidebar, margins, etc. Things should have room to

breathe; if your website is crowded, it is very hard to direct the attention of your visitor's eye.

 Relevant Calls-to-Action: Websites are meant to connect you with the people who are

interested in your content, products, and services. Once this connection is made, you want to

retain some sort of relationship with these visitors.

Things like email subscription forms, free downloadable ebooks or whitepapers, free product

forms, free consultations, or other invites are great calls-to-action (CTAs). These should be

strategically incorporated into your website design and are very important for gathering the

contact information (typically just an email address) of your visitors so that you can continue

conversations with them as leads and convert them into customers.

 Clean Backend Coding: This modern website design element is one that you might not notice

visually, but one that is probably the most important when it comes to the functionality of your

site. Behind every website is a great deal of coding in the backend that will dictate how your

website performs.

 Design for the User First: This element of modern website design is exactly what it sounds like:

You should design your site for the user, not just to boost your rankings. Companies, out of a

sense of desperation to get better rankings, tend to do things that are “good” for Google but bad

for the user.

 SEO-Boosting Elements: There are modern website design elements that can greatly improve

the Search Engine Optimization (SEO) of your site. A lot of these are invisible to the naked eye

and also appear in the backend coding of your pages and posts.

Design tricks like meta tags, title tags, heading tags, and other HTML coding go a long way in

helping your site climb the ranks of Google's search engine. Make sure you fill out, tweak, and

optimize these elements so they are relevant to your site and better your search ranking.

 Speed Optimization: Optimizing for speed is an imperative design element that should not be

overlooked. With today’s technology, people expect things to load immediately, or they’ll

probably throw in the towel three seconds later and never return. As a business, you don’t want

leads and prospects to think negatively of your brand just because your website is slow.

6.7. Web page and Layout

160
`

Web page: A web page is nothing more than a file, a HTML file to be exact. It's called HTML

because web page documents have the file extension .html or .htm. HTML stands

for Hyper Text Mark-up Language.

Running a web page

Once you have your HTML document on the floppy disc or your hard drive, you'll need to open it

up in the browser. It's easy enough. Since you're using a browser to look at this Primer, follow

along.

1. Under the FILE menu at the very top left of this screen, you'll find OPEN, OPEN FILE, OPEN

DOCUMENT, or words to that effect.

2. Click on it. Some browsers give you the dialogue box that allows you to find your document right

away. Internet Explorer, and later versions of Netscape Navigator, requires you to click on a

BROWSE button or OPEN FILE button to get the dialogue box. When the dialogue box opens up,

switch to the A:\ drive (or the floppy disc for MAC users) and open your document. If you saved

the file to your hard drive, get it from there.

3. You might have to then click an OK button. The browser will do the rest.

Web Layout: A website layout is a pattern (or framework) that defines a website's structure. It has

the role of structuring the information present on a site both for the website's owner and for users. It

provides clear paths for navigation within webpages and puts the most important elements of

a website front and center. Web Layout displays the page width, text position and format as the

document would appear in a browser. When it comes to the success of a website, the

most important aspect of the site is the page's layout. The website must be clean with an easy-to-

follow navigation system to contribute to a usable webpage layout. A good layout will also

encourage the visitor to view more pages on the site.

6.8. Summary

 Web page design is a process of conceptualization, planning, modeling, and execution of

electronic media content delivery via Internet in the form of technologies (such as markup

161
`

languages) suitable for interpretation and display by a web browser or other web-based graphical

user interfaces (GUIs).

 The basic model starts with the big picture and narrows down to the specific steps necessary to

complete the site.

 In software engineering this model is called the waterfall model, or sometimes the software

lifecycle model, because it describes the phases in the lifetime of software.

 The last software development process model that makes sense for Web site development is

called joint application design or JAD. It is also called evolutionary prototyping because it

involves evolving a prototype site to its final form in a series of steps.

 Brainstorming: Generally, coming up with a goal statement is fairly straightforward. The largest

problem is keeping the statement concise and realistic. To determine goals, a brainstorming

session is often required. The purpose of a brainstorming session is simply to bring out as many

possible ideas about the site as possible.

 Web page: A web page is nothing more than a file, a HTML file to be exact. It's called HTML

because web page documents have the file extension .html or .htm. HTML stands

for Hyper Text Mark-up Language.

 Web Layout: A website layout is a pattern (or framework) that defines a website's structure. It

has the role of structuring the information present on a site both for the website's owner and for

users.

6.9. SAQ

1. Explain various steps involved in Web design process.

2. What are the key elements in Web site design?

3. Explain various types of Web site structure.

162
`

Unit – VII Basic HTML

7.0.Structure
7.1. Objective
7.2. Basic HTML

7.2.1. HTML
7.2.2. Structure of HTML

7.3. Working with text
 7.3.1. Heading tag, Font tag, Address tag, Line break and paragraph tags
7.4. Center tag and marquee tag
7.5. List tag
7.6. Summary
7.7. SAQ

7.1. Objective

In this chapter we discuss all basic tags of HTML

7.2. Basic HTML

HTML is the standard markup language for creating Web pages.

 HTML stands for Hyper Text Markup Language
 HTML describes the structure of a Web page
 HTML consists of a series of elements
 HTML elements tell the browser how to display the content
 HTML elements are represented by tags
 HTML tags label pieces of content such as "heading", "paragraph", "table", and so on
 Browsers do not display the HTML tags, but use them to render the content of the page

7.2.1. HTML

HTML (Hypertext Markup Language) is a markup language, which consists of tags embedded in the text
of a document.

 Hyper is the opposite of linear. It used to be that computer programs had to move in a linear fashion.

This before this, this before this, and so on. HTML does not hold to that pattern and allows the person

viewing the World Wide Web page to go anywhere, any time they want.

 Text is what you will use. Real, honest to goodness English letters.

163
`

 Mark up is what you will do. You will write in plain English and then mark up what you wrote. More to

come on that in the next Primer.

 Language because they needed something that started with "L" to finish HTML and Hypertext

Markup Louie didn't flow correctly. Because it's a language, really -- but the language is plain

English

The browser reading the document interprets these markup tags to help format the document for

subsequent display to a reader. However, the browser makes many of the decisions about layout.

Remember, web browsers are available for a wide variety of computer systems.

The browser thus displays the document with regard to features that the viewer selects either

explicitly or implicitly. Factors affecting the layout and presentation include:

 The markup tags used.

 The physical page width.

 The fonts used to display the text.
 The color depth of the display.

Basic concepts of HTML

The HTML document on the word processor, or Notepad, WordPad, or Simple Text. When you are

finished creating the HTML document, you'll then open the document in a browser, like Netscape

Navigator. The browser will interpret the HTML commands for you and display the Web page. HTML

documents must be text only. When you save an HTML document, you must save only the text.

The Word Processor

When you write to the word processor you will need to follow a few steps:

1. Write the page as you would any other document.

2. When you go to save the document (Here's the trick), ALWAYS choose SAVE AS.

164
`

3. When the SAVE AS box pops up, you will need to save the page in a specific format. Look at the SAVE

AS dialogue box when it pops up: Usually at the bottom, you find where you will be able to change the

file format.

4. If you have a PC, save your document as ASCII TEXT DOS or just TEXT. Either one will work.

5. If you have a MAC, save your document as TEXT.

6. When I started writing HTML, I saved pages by assigning every Web page its own floppy disc. It just

helped me keep it all straight, but if you want to save right to your hard drive, do it. I only offer the

floppy disc premise as a suggestion.

Note: It is very important to choose SAVE AS EVERY time you save your document. If you don't, the

program won't save as TEXT, but rather in its default format. In layman's terms -- use SAVE AS or screw

up your document.

Name Your Document

What you name your document is very important. You must first give your document a name and then

add a suffix to it. That's the way everything works in HTML. You give a name and then a suffix.

Follow this format to name your document:

1. Choose a name. Anything. If you have a PC not running Windows 95, you are limited to eight letters,

however.

2. Add a suffix. For all HTML documents, you will add either ".htm" or ".html".

Running a web page

Once you have your HTML document on the floppy disc or your hard drive, you'll need to open it up in

the browser. It's easy enough. Since you're using a browser to look at this Primer, follow along.

1. Under the FILE menu at the very top left of this screen, you'll find OPEN, OPEN FILE, OPEN

DOCUMENT, or words to that effect.

165
`

2. Click on it. Some browsers give you the dialogue box that allows you to find your document right

away. Internet Explorer, and later versions of Netscape Navigator, requires you to click on a BROWSE

button or OPEN FILE button to get the dialogue box. When the dialogue box opens up, switch to the A:\

drive (or the floppy disc for MAC users) and open your document. If you saved the file to your hard

drive, get it from there.

3. You might have to then click an OK button. The browser will do the rest.

7.2.2. Structure of HTML

HTML Markup Tags

HTML markup tags are usually called HTML tags

 HTML tags are keywords surrounded by angle brackets like <html>

 HTML tags normally come in pairs like and

 The first tag in a pair is the start tag, the second tag is the end tag

Note: The start and end tags are also called the opening and closing tags

Syntax and example

<html>

<body>

<h1>My First HTML header</h1>

<p>My first HTML paragraph</p>
</body>

</html>

When a browser displays a web page, it will not display the markup tags.

The text between the <html> and </html> tags describes a web page.

The text between the <body> and </body> tags is displayed in the web browser.

166
`

The text between the <p> and </p> tags is displayed as paragraphs.

The text between the and tags is displayed in a bold font.

7.3.Working with text

HTML Elements

An HTML element usually consists of a start tag and an end tag, with the content inserted in
between:

<tagname>Content goes here...</tagname>

7.3.1. Heading tag, font tag, address tag, line break and paragraph tags

Headings are defined with the <h1> to <h6> tags. <h1> defines the largest heading. <h6>

defines the smallest heading.

<h1>This is a heading</h1>
<h2>This is a heading</h2>
<h3>This is a heading</h3>

Out put

This is a heading

This is a heading

This is a heading

HTML Paragraphs

Paragraphs are defined with the <p> tag.

Syntax

<p> paragraph</p>
<p> another paragraph</p>

Example

167
`

<html>

<body>

<h1>This is heading 1</h1>

<h2>This is heading 2</h2>

<h3>This is heading 3</h3>

<h4>This is heading 4</h4>

<h5>This is heading 5</h5>

<h6>This is heading 6</h6>

<p>Use heading tags only for headings.

Don't use them to make something BIG or BOLD.

Use other tags for that. </p>

</body>

</html>

Line Breaks

Use the
 tag if you want a line break (a new line) without starting a new paragraph:

<p>This is
a para
graph with line breaks</p>

The
 tag is an empty tag. It has no end tag like </br>.

You can read more about empty HTML tags in the next chapter of this tutorial.

Syntax

 or

Even if
 works in all browsers, writing
 instead is more future proof.

Example

<html>

168
`

<body>

<p>This is
a para
graph with line breaks</p>

</body>

</html>

Output

This is
a para
graph with line breaks

Comments

Comments can be inserted in the HTML code to make it more readable and understandable.

Comments are ignored by the browser and not displayed.

Syntax

<!-- This is a comment -->

Note: There is an exclamation point after the opening bracket, but not before the closing

bracket.

Example

<html>

<body>

<!--This comment will not be displayed-->

<p>This is a regular paragraph</p>

</body>

</html>

Horizontal tag

169
`

The <hr> tag inserts a horizontal rule. In HTML the <hr> tag has no end tag.

Syntax

<hr>

Example

<html>

<body>

<p>The hr element defines a horizontal rule:</p>

<hr />

<p>This is a paragraph</p>

<hr />

<p>This is a paragraph</p>

<hr />

<p>This is a paragraph</p>

</body>

</html>

Output

The hr tag defines a horizontal rule:

This is a paragraph

This is a paragraph

This is a paragraph

170
`

HTML Attributes
HTML tags can have attributes. Attributes provide additional information about the HTML
element.

Attributes always come in name/value pairs like this: name="value".

Attributes are always specified in the start tag of an HTML element.

Example for align

<h1> defines the start of a heading.

<h1 align="center"> has additional information about the alignment.

Example body

<body> defines the body of an HTML document.

<body bgcolor="yellow"> has additional information about the background color.

Tag Description

<html> Defines an HTML document

<body> Defines the document's body

<h1> to <h6> Defines header 1 to header 6

<p> Defines a paragraph

 Inserts a single line break

<hr> Defines a horizontal rule

<!--> Defines a comment

 Text Formatting Tags

Tag Description

171
`

 Defines bold text

<big> Defines big text

 Defines emphasized text

<i> Defines italic text

<small> Defines small text

 Defines strong text

<sub> Defines subscripted text

<sup> Defines superscripted text

<ins> Defines inserted text

 Defines deleted text

<s> Deprecated. Use instead

<strike> Deprecated. Use instead

<u> Deprecated. Use styles instead

"Computer Output" Tags

Tag Description

<code> Defines computer code text

<kbd> Defines keyboard text

<samp> Defines sample computer code

<tt> Defines teletype text

172
`

<var> Defines a variable

<pre> Defines preformatted text

<listing> Deprecated. Use <pre> instead

<plaintext> Deprecated. Use <pre> instead

<xmp> Deprecated. Use <pre> instead

Citations, Quotations, and Definition Tags

Tag Description

<abbr> Defines an abbreviation

<acronym> Defines an acronym

<address> Defines an address element

<bdo> Defines the text direction

<blockquote> Defines a long quotation

<q> Defines a short quotation

<cite> Defines a citation

<dfn> Defines a definition term

Reserved characters in HTML must be replaced with character entities.

Character Entities

Some characters are reserved in HTML. For example, you cannot use the greater than or less

than signs within your text because the browser could mistake them for markup.

173
`

If we want the browser to actually display these characters we must insert character entities

in the HTML source.

A character entity looks like this: &entity_name; OR &#entity_number;

To display a less than sign we must write: < or <

The advantage of using an entity name instead of a number is that the name often is easier to

remember. However, the disadvantage is that browsers may not support all entity names

(while the support for entity numbers is very good).

Non-breaking Space

The most common character entity in HTML is the non-breaking space.

Normally HTML will truncate spaces in your text. If you write 10 spaces in your text HTML
will remove 9 of them. To add lots of spaces to your text, use the character entity.

Example

<html>

<body>

<p>Character entities</p>

<p>&X;</p>

<p>

Substitute the "X" with an entity number like "#174" or an entity name like "pound" to see
the result.

</p>

</body>

</html>

Out put

Character entities

174
`

&X;

Substitute the "X" with an entity number like "#174" or an entity name like "pound" to see
the result

Commonly Used Character Entities

Note Entity names are case sensitive!

Result Description Entity Name Entity Number

 non-breaking space

< less than < <

> greater than > >

& Ampersand & &

¢ Cent ¢ ¢

£ Pound £ £

¥ Yen ¥ ¥

€ Euro € €

§ Section § §

© Copyright © ©

® registered trademark ® ®

7.4.Center tag and marquee tag

Center tag : When writing in HTML, the <center> tag was used to contain both block-

level and inline elements on a web page. Anything contained in the <center> tags would

be aligned with the middle of the page. But this tag doesn’t support in HTML 5 version.

175
`

<center> this text will be center-aligned.</center>

The <center> tag is used to center-align text.

Browser Support

Element Chrome Internet
explore

Firefor opera

<center> Yes Yes Yes Yes

Marquee tag: HTML <marquee> Tag

The <marquee> is a non-standard HTML tag which was used to create a scrolling text or an

image. It was used to make the text/image scroll horizontally across or vertically down the web
page. The <marquee> element comes in pairs. It means that the tag has opening <marquee> and
closing </marquee> elements. Consider the following example for marquee tag

<! DOCTYPE HTML>
<html>
<head>
<title> title of the document </title>
</head>
<body>
<marquee> a scrolling text created with HTML marquee element.
</marquee>
</body>
</html>

Use direction attribute of <marquee> element to change the direction of the text/image. See

another example where the text scrolls from up to down.

<! DOCTYPE HTML>
<html>
<head>
<title> title of the document </title>
</head>
<body>
<marquee direction=”down”> a scrolling text created with HTML marquee element.
</marquee>

176
`

</body>
</html>

Let us one more example

<! DOCTYPE HTML>
<html>
<head>
<title> title of the document </title>
</head>
<body>
<marquee behavior=”scroll” direction=”up”>

</marquee>
</body>
</html>

Attributes

The following attributes can be used to adjust the appearance of the <marquee> element.

Attribute Value Description

behavior
scroll
slide
alternate

Defines the scrolling type.

bgcolor
rgb(x,x,x)
#xxxxxx
colorname

Is used to give a background color.

direction

up
down
left
right

Sets the direction for the scrolling content.

Height
pixels
%

Defines the marquee's height.

177
`

Attribute Value Description

Hspace Pixels Defines horizontal space around the marquee.

Loop Number
Defines how many times the content will scroll. If we don't define this, the
content will scroll forever.

scrollamount Number Defines the scrolling amount at each interval in pixels. Default value is 6.

scrolldelay Seconds
Defines how long delay will be between each jump. The default value is 85
and smaller amounts than 60 will be ignored.

truespeed Seconds Is used to delay the scroll lesser than 60.

Vspace Pixels Defines vertical space around the marquee.

Width
pixels
%

Defines the marquee's width.

7.5. List tag

HTML lists are used to present list of information in well formed and semantic way. There are

three different types of list in HTML and each one has a specific purpose and meaning.

 Unordered list — Used to create a list of related items, in no particular order.
 Ordered list — Used to create a list of related items, in a specific order.

 Description list — Used to create a list of terms and their descriptions.

Note: inside a list item you can put text, images, links, line breaks, etc. you can also place

an entire list inside a list item to create the nested list.

178
`

HTML Unordered Lists

An unordered list is a list of items. The list items are marked with bullets (typically small black
circles).

An unordered list starts with the tag. Each list item starts with the tag.

Coffee
Milk

Here is how it looks in a browser:

 Coffee
 Milk

Inside a list item you can put paragraphs, line breaks, images, links, other lists, etc.

Ordered Lists

An ordered list is also a list of items. The list items are marked with numbers.

An ordered list starts with the tag. Each list item starts with the tag.

Coffee
Milk

Here is how it looks in a browser:

1. Coffee
2. Milk

Inside a list item you can put paragraphs, line breaks, images, links, other lists, etc.

Description Lists

A definition list is not a list of items. This is a list of terms and explanation of the terms.

A definition list starts with the <dl> tag. Each definition-list term starts with the <dt> tag. Each
definition-list definition starts with the <dd> tag.

<dl>

179
`

<dt>Coffee</dt>
<dd>Black hot drink</dd>
<dt>Milk</dt>
<dd>White cold drink</dd>
</dl>

Here is how it looks in a browser:

Coffee

Black hot drink

Milk

White cold drink

Inside a definition-list definition (the <dd> tag) you can put paragraphs, line breaks, images,
links, other lists, etc.

Example

<html>

<body>

<h4>Numbered list:</h4>

 Apples

 Bananas

 Lemons

 Oranges

<h4>Letters list:</h4>

<ol type="A">

 Apples

 Bananas

 Lemons

180
`

 Oranges

<h4>Lowercase letters list:</h4>

<ol type="a">

 Apples

 Bananas

 Lemons

 Oranges

<h4>Roman numbers list:</h4>

<ol type="I">

 Apples

 Bananas

 Lemons

 Oranges

<h4>Lowercase Roman numbers list:</h4>

<ol type="i">

 Apples

 Bananas

 Lemons

 Oranges

</body>

</html>

181
`

Output

Numbered list:

1. Apples
2. Bananas
3. Lemons
4. Oranges

Letters list:

A. Apples
B. Bananas
C. Lemons
D. Oranges

Lowercase letters list:

a. Apples
b. Bananas
c. Lemons
d. Oranges

Roman numbers list:

I. Apples
II. Bananas

III. Lemons
IV. Oranges

Lowercase Roman numbers list:

i. Apples
ii. Bananas

iii. Lemons
iv. Oranges

List Tags
Tag Description

 Defines an ordered list

182
`

 Defines an unordered list

 Defines a list item

<dl> Defines a definition list

<dt> Defines a definition term

<dd> Defines a definition description

<dir> Deprecated. Use instead

<menu> Deprecated. Use instead

7.6. Summary

 HTML stands for Hyper Text Markup Language.

 It is used to design web pages using markup language. ... HTML is a markup language

which is used by the browser to manipulate text, images and other content to display it in

required format. HTML was created by Tim Berners-Lee in 1991

 Headings are defined with the <h1> to <h6> tags. <h1> defines the largest heading. <h6>

defines the smallest heading.

 <body> defines the body of an HTML document.

 HTML supports ordered, unordered and definition lists.

7.7. SAQ

1. What is HTML? Explain various features of HTML.
2. What are the disadvantages of HTML?
3. Explain the basic structure of HTML with example.
4. Discuss about various elements for text formatting.
5. Explain various heading tags that are used in HTML.
6. What is the use of marquee tag>
7. What is the purpose of span tag?
8. Discuss about various list tags available in HTML.

183
`

Unit – VIII Inserting images and tables in Web page

8.0. Structure

8.1. Objective

8.2. Inserting images

8.3. Creating Hyperlinks in a Web page

8.4. Creating Table in a Web page

8.5. Frames

8.6. Summary

8.7. SAQ

8.1. Objective

This unit helps in inserting images and tables in web pages.

8.2. Inserting images

With HTML you can display images in a document

The Image Tag and the Src Attribute

In HTML, images are defined with the tag.

The tag is empty, which means that it contains attributes only and it has no closing tag.

To display an image on a page, you need to use the src attribute. Src stands for "source". The

value of the src attribute is the URL of the image you want to display on your page.

The syntax of defining an image:

184
`

The URL points to the location where the image is stored. An image named "boat.gif" located in

the directory "images" on "www.images.com" has the URL:

http://www.images.com/images/boat.gif.

The browser puts the image where the image tag occurs in the document. If you put an image tag

between two paragraphs, the browser shows the first paragraph, then the image, and then the

second paragraph

The Alt Attribute

The alt attribute is used to define an "alternate text" for an image. The value of the alt attribute is

an author-defined text:

 The "alt" attribute tells the reader what he or she is missing on a page if the browser can't load

images. The browser will then display the alternate text instead of the image. It is a good practice

to include the "alt" attribute for each image on a page, to improve the display and usefulness of

your document for people who have text-only browsers.

Notes: If an HTML file contains ten images - eleven files are required to display the page

right. Loading images take time, so my best advice is: Use images carefully

Example

<html>

<body>

<p>

An image:

<img src="constr4.gif"

width="144" height="50">

185
`

</p>

<p>

A moving image:

<img src="hackanm.gif"

width="48" height="48">

</p>

<p>

Note that the syntax of inserting a moving image is no different from that of a non-moving
image.

</p>

</body>

</html>

Output

An image:

A moving image:

Note that the syntax of inserting a moving image is no different from that of a non-moving
image.

Example for ALT

<html>

<body>

<p>

186
`

Text-only browsers cannot display images and will only display the text that is specified in the

"alt" attribute for the image. Here, the "alt"-text is "Go Left".</p>

<p>

Note that if you hold the mouse pointer over the image, most browsers will display the "alt"-text.

</p>

</body>

</html>

Output

Text-only browsers cannot display images and will only display the text that is specified in the

"alt" attribute for the image. Here, the "alt"-text is "Go Left".

Note that if you hold the mouse pointer over the image, most browsers will display the

"alt"-text

Image Tags
Tag Description

 Defines an image

<map> Defines an image map

<area> Defines a clickable area inside an image map

8.3. Creating Hyperlinks in a Web page

HTML make it possible to define hyperlinks to other information items located all over the

world, thus allowing documents to join the global information space known as the World Wide

187
`

Web. Linking is possible because every document on the Web has a unique address, known as a

Uniform Resource Locator (URL).

Links and addressing

HTML uses a hyperlink to link to another document on the Web

The Anchor Tag and the Href Attribute

HTML uses the <a> (anchor) tag to create a link to another document.

An anchor can point to any resource on the Web: an HTML page, an image, a sound file, a

movie, etc.

The syntax of creating an anchor:

Text to be displayed

The <a> tag is used to create an anchor to link from, the href attribute is used to address the document

to link to, and the words between the open and close of the anchor tag will be displayed as a hyperlink.

The Target Attribute

With the target attribute, you can define where the linked document will be opened.

The line below will open the document in a new browser window:

<a href="http://www.rastiya sanskrit vidyapeetha.ac.in/"

target="_blank">Visit RSVP!

The Anchor Tag and the Name Attribute

The name attribute is used to create a named anchor. When using named anchors we can create

links that can jump directly into a specific section on a page, instead of letting the user scroll

around to find what he/she is looking for.

Below is the syntax of a named anchor

188
`

Text to be displayed

The name attribute is used to create a named anchor. The name of the anchor can be any text you care

to use.

The line below defines a named anchor:

Useful Tips Section

You should notice that a named anchor is not displayed in a special way.

To link directly to the "tips" section, add a # sign and the name of the anchor to the end of a

URL, like this:

Jump to the Useful Tips Section

A hyperlink to the Useful Tips Section from WITHIN the file "html_links.asp" will look like

this:

Jump to the Useful Tips Section

Example

<html>

<body>

Last Page

<p>

If you set the target attribute of a link to "_blank",

the link will open in a new window.

</p>

</body>

189
`

</html>

Output

Last Page

If you set the target attribute of a link to "_blank", the link will open in a new window

8.4. Creating Tables in a Web page

Tables are defined with the <table> tag. A table is divided into rows (with the <tr> tag), and each

row is divided into data cells (with the <td> tag). The letters td stands for "table data," which is

the content of a data cell. A data cell can contain text, images, lists, paragraphs, forms, horizontal

rules, tables, etc.

Syntax

<table border="1">

<tr>

<td>row 1, cell 1</td>

<td>row 1, cell 2</td>

</tr>

<tr>

<td>row 2, cell 1</td>

<td>row 2, cell 2</td>

</tr>

</table>

How it looks in a browser:

row 1, cell 1 row 1, cell 2

row 2, cell 1 row 2, cell 2

190
`

Tables and the Border Attribute

If you do not specify a border attribute the table will be displayed without any borders.

Sometimes this can be useful, but most of the time, you want the borders to show.

To display a table with borders, you will have to use the border attribute:

<table border="1">

<tr>

<td>Row 1, cell 1</td>

<td>Row 1, cell 2</td>

</tr>

</table>

Headings in a Table

Headings in a table are def<table border="1">

<tr>

<th>Heading</th>

<th>Another Heading</th>

</tr>

<tr>

<td>row 1, cell 1</td>

<td>row 1, cell 2</td>

</tr>

<tr>

<td>row 2, cell 1</td>

<td>row 2, cell 2</td>

</tr>

</table>ined with the <th> tag.

How it looks in a browser:

191
`

Heading Another Heading

row 1, cell 1 row 1, cell 2

row 2, cell 1 row 2, cell 2

Empty Cells in a Table

Table cells with no content are not displayed very well in most browsers.

<table border="1">

<tr>

<td>row 1, cell 1</td>

<td>row 1, cell 2</td>

</tr>

<tr>

<td>row 2, cell 1</td>

<td></td>

</tr>

</table>

How it looks in a browser:

row 1, cell 1 row 1, cell 2

row 2, cell 1

Note that the borders around the empty table cell are missing (NB! Mozilla Firefox displays the

border).

To avoid this, add a non-breaking space () to empty data cells, to make the borders

visible:

192
`

<table border="1">

<tr>

<td>row 1, cell 1</td>

<td>row 1, cell 2</td>

</tr>

<tr>

<td>row 2, cell 1</td>

<td> </td>

</tr>
</table>

How it looks in a browser:

row 1, cell 1 Row 1, cell 2

row 2, cell 1

Table Tags

Tag Description

<table> Defines a table

<th> Defines a table header

<tr> Defines a table row

<td> Defines a table cell

<caption> Defines a table caption

<colgroup> Defines groups of table columns

<col> Defines the attribute values for one or more columns in a table

<thead> Defines a table head

193
`

<tbody> Defines a table body

<tfoot> Defines a table footer

8.5. Frames

A frame is an independent scrolling region, or window, of a Web page. Every Web page may be

divided into many individual frames, which can even be nested within other frames. Fixed screen

sizes limit how many frames can really be used simultaneously. Each frame in a window may be

separated from the others with a border, in this way; a framed document may resemble a table.

However, frames aren’t a fancy form of tables. Each separate frame may contain a different

document, indicated by a unique URL. Because the documents included in a framed region may

be much larger than the room available onscreen, each frame may provide a scroll bar or other

controls to manipulate the size of the frame. Individual frames usually are named, so that they

may be referenced through links or scripting, allowing the contents of one frame to affect the

contents of another. This referencing capability is a major difference between tables and frames.

Frames provide layout facilities and, potentially, navigation.

Frames are included in a HTML document through the <FRAMESET> and <FRAME>

elements. The <FRAMESET> and <FRAME> elements constitute the HTML needed for frames.

The disadvantages of using frames are:

The web developer must keep track of more HTML documents

It is difficult to print the entire page

The Frameset Tag

The <frameset> tag defines how to divide the window into frames

Each frameset defines a set of rows or columns

194
`

The values of the rows/columns indicate the amount of screen area each row/column will

occupy

syntax:

<FRAMESET>

<FRAMESET CLASS=”class name(s)” COLS=”list of columns” ID=”unique

alphanumeric identifier” ROWS=”list of rows” STYLE=”style information”

TITLE=”advisory text” onload=”script” onunload=”script”>

<FRAME> elements and <NOFRAMES>

</FRAMESET>

syntax:

<FRAME>

<FRAME CLASS=”class name(s)” FRAMEBORDER=”0 | 1” ID=”unique alphanumeric

identifier” LONGDESC=”URL of description” MARGINHEIGHT=”pixels”

MARGINWIDTH=”pixels” NAME=”string” NORESIZE SCROLLING=”AUTO | NO |

YES” SRC=”URL” of frame contents” STYLE=”style information” TITLE=”advisory

text”>

In the example below we have a frameset with two columns. The first column is set to 25% of

the width of the browser window. The second column is set to 75% of the width of the browser

window. The HTML document "frame_a.htm" is put into the first column, and the HTML

document "frame_b.htm" is put into the second column:

<frameset cols="25%,75%">

 <frame src="frame_a.htm">

 <frame src="frame_b.htm">

</frameset>

195
`

Note: The frameset column size value can also be set in pixels (cols="200,500"), and one of the

columns can be set to use the remaining space (cols="25%,*").

Basic Notes - Useful Tips

If a frame has visible borders, the user can resize it by dragging the border. To prevent a user

from doing this, you can add noresize="noresize" to the <frame> tag.

Add the <noframes> tag for browsers that do not support frames.

Important: You cannot use the <body></body> tags together with the <frameset></frameset>

tags! However, if you add a <noframes> tag containing some text for browsers that do not

support frames, you will have to enclose the text in <body></body> tags! See how it is done in

the first example below.

Frame Targeting

When using frames, you often may find that making the links in one frame target another

frame is beneficial. This way, when a user clicks a button or activates a link in one

framed document, the requested page loads in another frame. Link targeting has two

steps:

1.Ensure frame naming by setting the NAME attribute in the <FRAME> element to a

unique name.

2.Use the TARGET attribute in the <A> element to set the target for the anchor. For

example, a link sych as

loads the site specified by the HREF into the window called Display, if such a frame

exists. If the target specified by the name doesn’t exist, the link loads over the window it

is in.

Some particular values for the TARGET attribute have special meaning, which are

summarized in the following table.

Reserved TARGET values:

196
`

Value Meaning

_blank Load the page into a new, generally unnamed, window.

_self Load the page over the current frame.

_parent Load the link over the parent frame.

_top Load the link over the frames in the window.

No frames

The noframes element displays text for browsers that do not handle frames. The noframes

element goes inside the frameset element.

Note: If a browser handles frames, it will not display the text in the noframes element.

Important: If you add a <noframes> tag to a frameset, you will have to enclose the text in
<body></body> tags!

Example

<html>

<frameset cols="25%,50%,25%">

 <frame src="frame_a.htm">

 <frame src="frame_b.htm">

 <frame src="frame_c.htm">

<noframes>

<body>Your browser does not handle frames!</body>

</noframes>

</frameset>

197
`

</html>

The Use of <NOFRAMES>

The <NOFRAMES> element is used to enclose the HTML and text that should be displayed

when a browser that does not support frames accesses the Web page. The <NOFRAMES>

element should be found only within the <FRAMESET> element. The contents of the

<NOFRAMES> element should be correct HTML, potentially including the <BODY> element,

which can be used as an alternative form for browsers that don’t support frames.

Floating Frames

A floating frame introduced by Microsoft, has been incorporated in the HTML 4 standard. The

idea of the floating frame is to create an inline framed region, or window, that acts similarly to

any other embedded object, insofar as text can be flowed around it. An inline frame is defined by

the <IFRAME> element and may occur anywhere within the <BODY> element of an HTML

document. Compare this to the <FRAME> element, which should occur only within the

<FRAMESET> element and the <FRAMESET> element should preclude the <BODY> element.

The major attributes to set for the <IFRAME> element include SRC, HEIGHT, and WIDTH.

The SRC is set to the URL of the file to load, while the HEIGHT and WIDTH are set to either

the pixel or percentage value of the screen that the floating frame region should consume. Like

an element, floating frames should support ALIGN, HSPACE, and VSPACE attributes

for basic positioning within the flow of text. Note that, unlike the <FRAME> element, the

<IFRAME> element comes with a close tag. <IFRAME> and </IFRAME> should contain any

HTML markup code and text that is supposed to be displayed in browsers that don’t support

floating frames.

Using Frames

One of the biggest problems with frames is that they initially were used simply because they

existed/. Framed documents can provide considerable benefit, but at a price. A potential benefit

of frames is that they allow content to be fixed onscreen. One frame may contain a table of

contents, while the other frame contains the actual information. Keeping the table of contents

onscreen provides a convenient way to navigate the body of information. Furthermore, if one

198
`

frame has fixed navigation, the user may perceive the Web interface to be more responsive,

because only part of the screen needs to update between selections. The primary benefit of

frames is to present two or more things simultaneously, but this extra window of information has

its costs.

Frame Problems

The problems with frames are numerous, including design issues, navigation confusion,

bookmaking problems, loss of URL context, and printing issues. The only potential design issue

is the possibility that a framed document may sacrifice valuable screen real estate because of

scroll bars, which could pose trouble for people with lower-resolution monitors. The only way

to get around this problem is to limit the number of frames used on a page. Additional

navigational problems include loss of context, because the URL of the document tends not to

change, which accounts for why bookmaking does not work as expected. Many people use URLs

as a way to orient themselves at a site. Frames give up this clue to location.

Frame Tags

Tag Description

<frameset> Defines a set of frames

<frame> Defines a sub window (a frame)

<noframes> Defines a noframe section for browsers that do not handle frames

<iframe> Defines an inline sub window (frame)

8.6. Summary

1. In HTML, images are defined with the tag.

2. The tag is empty, which means that it contains attributes only and it has no closing

tag.

199
`

3. Tables are defined with the <table> tag. A table is divided into rows (with the <tr> tag),

and each row is divided into data cells (with the <td> tag).

4. A frame is an independent scrolling region, or window, of a Web page. Every Web page

may be divided into many individual frames, which can even be nested within other

frames.

5. Fixed screen sizes limit how many frames can really be used.

8.7. SAQ

1. How to insert image into the web page.

2. Design time table of course in tabular fashion using <table> tag.

3. What is the use of <p> tag?

4. Explain how to create hyper links of the web page.

5. Design a home page of the college using frames.

200
`

Unit – IX DHTML and CSS

9.0. Structure

9.1. Objective

9.2. DHTML – CSS

9.3. Inline style sheets

9.4. Embedding a style sheet

9.5. Linking a External style sheet

9.6. Java Script programming

 9.6.1. Arrays in Java Script

 9.6.2. Functions in Java Script

 9.6.3. Java Script Events

9.7. Summary

9.8. SAQ

9.1. Objective

The aim of this chapter is to understand about DHTML, CSS and Java Script.

9.2. DHTML (Dynamic Hyper Text Markup Language)

Dynamic Hyper Text Markup Language (DHTML) is a combination of Web development

technologies used to create dynamically changing websites. Web pages may include animation,

dynamic menus and text effects. The technologies used include a combination of HTML, Java

Script or VB Script,

CSS and the Document Object Model(DOM).

Designed to enhance a Web user’s experience, DHTML includes the following features:

 Dynamic content, which allows the user to dynamically change Web page content

 Dynamic positioning of Web page elements

201
`

 Dynamic style, which allows the user to change the Web page’s color, font, size or

content.

CSS(Cascading Style Sheets)

What is CSS?

1) CSS stands for Cascading Style Sheets

2) Styles define how to display HTML elements

3) Styles are normally stored in Style Sheets

4) Styles were added to HTML 4.0 to solve a problem

5) External Style Sheets can save you a lot of work

6) External Style Sheets are stored in CSS files

7) Multiple style definitions will cascade into one

Styles Solve a Common Problem

HTML tags were originally designed to define the content of a document. They were supposed to

say "This is a header", "This is a paragraph", "This is a table", by using tags like <h1>, <p>,

<table>, and so on. The layout of the document was supposed to be taken care of by the browser,

without using any formatting tags.

As the two major browsers - Netscape and Internet Explorer - continued to add new HTML tags

and attributes (like the tag and the color attribute) to the original HTML specification, it

became more and more difficult to create Web sites where the content of HTML documents was

clearly separated from the document's presentation layout.

The Rise of Style Sheets

Basically, style sheets separate the structure of a document from its presentation. Dividing layout

and presentation has many theoretical benefits, most importantly, it can provide for flexible

documents that display equally well across many types of output devices. As early as 1993,

people have been interested in adding more layout control to HTML. Many approaches have

been discussed and many continue to be used. Because of the theoretical benefits of style sheets,

they have been the favorite solution of the standards bodies. More than one type of style sheet

202
`

exists. Many industry pundits support a type of sheet known as Document Style Semantics and

Specification Language (DSSSL), developed by the SGML community. The most recent

addition is Extensible Style Language (XSL), an industry proposal based on DSSSL that uses

Extensible Markup Language (XML) syntax.

Style Sheet Basics

CSS1 style sheets rely on an underlying markup structure, such as HTML. They are not a

replacement for HTML. Without a binding to an element, a style really doesn’t mean anything.

The purpose of a style sheet is to create a presentation for a particular element or set of elements.

Binding an element to a style specification consists of an element, followed by its associated

style information within curly braces:

Element {style specification}

Suppose that you want to bind a style rule to the <H1> element so that a 28-point Impact font is

always used. The following rule would result in the desired display:

H1 {font-family: Impact;

 Font-size: 28pt}

In general, a style specification or style sheet is simply a collection of rules. These rules include

a selector, an HTML element, a CLASS name, or an ID value, which is bound to a style property

such as font-family, followed by a colon and the values for that style property. Multiple style

rules may be included in a style specification by separating the rules with semicolons. You can

also use many shorthand notations and grouping rules that are available. Style sheets alone do

nothing. First, you must bind the rule to a tag or class of HTML objects. Currently, more than 50

properties are specified under CSS1 that affect the presentation of an HTML document, and

more than 50 more properties are defined under CSS2. Unfortunately, not all of them are

supported consistently across the major browsers. Even worse, most of the newer style properties

defined by CSS2 are not supported by any browser.

Adding Style to a Document

Style information may be included in an HTML document in any one of three basic ways:

203
`

1. Use an outside style sheet, either by importing it or by linking to it.

2. Embed a document-wide style in the <HEAD> element of the document.

3. Provide an inline style exactly where the style needs to be applied.

Each of these style sheet approaches has its own pros and cons, as listed in the following table:

Comparison of Style Sheet Approaches:

Pros

External Style

Sheets

Document-Wide

Style Inline Style

Can set style for

many documents

with one style

sheet

Can control style

for a document in

one place.

No additional

download time for

style information.

Can control style

to a single

character instance.

Overrides any

external or

document styles.

Cons Require extra

download time for

the style sheet,

which may delay

page rendering

Need to reapply

style information

for other

documents

Need to reapply

style information

throughout the

document and

outside

documents.

Bound too closely

to HTML,

difficult to update.

In brief, Cascading style sheets provide better control over the look and feel of the Web pages.

Style sheets aren’t just useful for making attractive pages. By dividing structure and style, they

make documents simpler, and easier to manipulate. While style sheets provide a great deal of

204
`

flexibility in creating pages, they are not fully implemented yet in today’s browsers. Some

inconsistencies exist between implementations. When used in a no obtrusive manner, style sheets

are a great way to improve the layout of pages, without locking into a proprietary solution.

The following is example that implements CSS.

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01//EN">
<html>
<head>
 <title>My first styled page</title>
 <style type="text/css">
< body> {
 padding-left: 11em;
 font-family: Georgia, "Times New Roman",
 Times, serif;
 color: purple;
 background-color: #d8da3d }
 ul.navbar {
 list-style-type: none;
 padding: 0;
 margin: 0;
 position: absolute;
 top: 2em;
 left: 1em;
 width: 9em }
 h1 {
 font-family: Helvetica, Geneva, Arial,
 SunSans-Regular, sans-serif }
 ul.navbar li {
 background: white;
 margin: 0.5em 0;
 padding: 0.3em;
 border-right: 1em solid black }
 ul.navbar a {
 text-decoration: none }
 a:link {
 color: blue }
 a:visited {
 color: purple }
 address {
 margin-top: 1em;
 padding-top: 1em;
 border-top: thin dotted }
 </style>
</head>

205
`

</body>
</html>

9.3. InLine style sheets

Inline style sheets is a term that refers to style sheet information being applied to

the current element. By this, I mean that instead of defining the style once, then applying the

style against all instances of an element (say the<p> tag), you only apply the style to the instance

you want the style to apply to. Actually, it's not really a style sheet as such, so a more accurate

term would be inline styles.

Consider the following example

<p style =”color:#ff9900”> this text has been styled using inline style sheets.</p>

Example:

<!DOCTYPE html>

<html>

<body>

<h1 style="color:blue;">This is a Blue Heading</h1>

</body>

</html>

9.4. Embedding a style sheet

Embedded CSS is also know as Internal style sheets. This can be used when a single HTML

document must be styled uniquely. The CSS rule set should be within the HTML file in the head

section i.e the CSS is embedded within the HTML file.

Example:
<!DOCTYPE html>
<html>
 <head>
 <title>Internal CSS</title>
 <style>
 .main {
 text-align:center;
 }
 .GFG {
 color:#009900;

206
`

 font-size:50px;
 font-weight:bold;
 }
 .geeks {
 font-style:bold;
 font-size:20px;
 }
 </style>
 </head>
 <body>
 <div class = "main">
 <div class ="GFG">RASTRIYA SANSKRIT KIDYAPEETA</div>

 <div class ="geeks">
 A computer science portal for VIDYAPEETA students
 </div>
 </div>
 </body>
</html>

9.5. Linking an External style sheet

External CSS: External CSS contains separate CSS file which contains only style property with

the help of tag attributes (For example class, id, heading, … etc). CSS property written in a

separate file with .css extension and should be linked to the HTML document using link tag.

This means that for each element, style can be set only once and that will be applied across web

pages. Example: The file given below contains CSS property. This file save with .css extension.

Let us consider an example

Body{

 Background-color: darklategrey;

 Color: azure;

font-size: 1.1em;

}

H1{

 Color:coral;

}

#intro{

 Font-size:1.3em;

207
`

}

.colorful{

 Color:orange;

}

Link to external style sheet

Below is the HTML file that is making use of the created external style sheet

 link tag is used to link the external style sheet with the html webpage.

 href attribute is used to specify the location of the external style sheet file.

<!DOCTYPE html>

<html>

 <head>

 <link rel="stylesheet" href="geeks.css"/>

 </head>

 <body>

 <div class = "main">

 <div class ="GFG">GeeksForGeeks</div>

 <div id ="geeks">

 A computer science portal for geeks

 </div>

 </div>

 </body>

</html>

9.6. Java Script programming

Javascript is a dynamic computer programming language. It is lightweight and most commonly

used as a part of web pages, whose implementations allow client-side script to interact with the

user and make dynamic pages. It is an interpreted programming language with object-oriented

capabilities. JavaScript was first known as LiveScript, but Netscape changed its name to

JavaScript, possibly because of the excitement being generated by Java. JavaScript made its first

appearance in Netscape 2.0 in 1995 with the name LiveScript. The general-purpose core of the

208
`

language has been embedded in Netscape, Internet Explorer, and other web browsers. The

ECMA-262 Specification defined a standard version of the core JavaScript language. JavaScript

is a lightweight, interpreted programming language.

 Designed for creating network-centric applications.

 Complementary to and integrated with Java.

 Complementary to and integrated with HTML.

 Open and cross-platform.

Advantages of Java Script

The merits of using JavaScript are:

Less server interaction: You can validate user input before sending the page off to the server.

This saves server traffic, which means less load on your server.

Immediate feedback to the visitors: They don't have to wait for a page reload to see if they

have forgotten to enter something.

Increased interactivity: You can create interfaces that react when the user hovers over them

with a mouse or activates them via the keyboard.

 Richer interfaces: You can use JavaScript to include such items as drag-anddrop components

and sliders to give a Rich Interface to your site visitors.

Syntax

Java Script can be implemented using Java Script statements that are placed within the

<script>…</script> HMTL tags in a web page.

You can place the <script> tags, containing java script, any where within the web page, but

normally recommended script tag is kept within the <head> tags.

The <script> tag alters the browser program to start interpreting all the text between these tags as

a script. Consider the following simple syntax for java script

<script>

 Javascript code

</script>

209
`

The script tag takes two important attributes:

Language: This attribute specifies what scripting language you are using. Typically, its value

will be javascript. Although recent versions of HTML (and XHTML, its successor) have phased

out the use of this attribute.

 Type: This attribute is what is now recommended to indicate the scriptin language in use and its

value should be set to "text/javascript".

Then the javascript syntax will look as follows

<script language=”javascript” type=”text/javascript”>

 Javascript code

</script>

Comments in JavaScript

 Java Script supports both C-style and C++-style comments. Any text between a // and the end of

a line is treated as a comment and is ignored by JavaScript. Any text between the characters /*

and */ is treated as a comment. This may span multiple lines. JavaScript also recognizes the

HTML comment opening sequence is not recognized by JavaScript so it should be written as //--

>.

Java script variables
Like many other programming languages, JavaScript has variables. Variables can be thought of as named

containers. You can place data into these containers and then refer to the data simply by naming the

container. Before you use a variable in a JavaScript program, you must declare it. Variables are declared

with the var keyword as follows.

<script type=”text/javascript”>

<!

 Var slno;

Var name;

//-->

</script>

Multiple declaration of variables

<script type=”text/javascript”>

<!

 Var slno, name;

//-->

210
`

</script>

Note: where var is key word
Storing a value in a variable is called variable initialization. You can do variable initialization at the time

of variable creation or at a later point in time when you need that variable. For instance, you might

create a variable named money and assign the value 2000.50 to it later. For another variable, you can

assign a value at the time of initialization as follows.

<script type=”text/javascript”>

<!

 Var slno=01;

Var name=”vidyapeeta”;

//-->

</script>

Conditional and control statements in Java Script

Conditional Statements

Very often when you write code, you want to perform different actions for different decisions.

You can use conditional statements in your code to do this.

In JavaScript we have the following conditional statements:

 Use if to specify a block of code to be executed, if a specified condition is true
 Use else to specify a block of code to be executed, if the same condition is false
 Use else if to specify a new condition to test, if the first condition is false
 Use switch to specify many alternative blocks of code to be executed

The if Statement

Use the “if” statement to specify a block of JavaScript code to be executed if a condition is true.

Syntax

if (condition) {
 // block of code to be executed if the condition is true
}

211
`

consider the following example for if statement

<!DOCTYPE html>
<html>
<body>

<p>Display "Good day!" if the hour is less than 18:00:</p>

<p id="demo">Good Evening!</p>

<script>
if (new Date().getHours() < 18) {
 document.getElementById("demo").innerHTML = "Good day!";
}
</script>

</body>
</html>

The else Statement

Use the else statement to specify a block of code to be executed if the condition is false.

if (condition) {
 // block of code to be executed if the condition is true
} else {
 // block of code to be executed if the condition is false
}

<!DOCTYPE html>
<html>
<body>

<p>Click the button to display a time-based greeting:</p>

<button onclick="myFunction()">Try it</button>

<p id="demo"></p>

<script>
function myFunction() {
 var hour = new Date().getHours();
 var greeting;
 if (hour < 18) {
 greeting = "Good day";

212
`

 } else {
 greeting = "Good evening";
 }
 document.getElementById("demo").innerHTML = greeting;
}
</script>
</body>
</html>
The JavaScript Switch Statement
Use the switch statement to select one of many code blocks to be executed.
Syntax
switch(expression) {
 case x:
 // code block
 break;
 case y:
 // code block
 break;
 default:
 // code block
}
JavaScript Looping
Looping
Very often when you write code, you want the same block of code to run a number of times. You

can use looping statements in your code to do this.

In JavaScript we have the following looping statements:

 while - loops through a block of code while a condition is true

 do...while - loops through a block of code once, and then repeats the loop while a

condition is true

 for - run statements a specified number of times

while
The while statement will execute a block of code while a condition is true..
Syntax
While (condition)
{
 Code to be executed
}
do...while
The do...while statement will execute a block of code once, and then it will repeat the loop while
a condition is true

213
`

Syntax
Do
{
Code to be executed
}while(condition)

for
The for statement will execute a block of code a specified number of times
Syntax
for(initialization; condition; increment/decrement)
{
 Code to be executed
}
Consider the following example for loop control statement

<!DOCTYPE html>

<html>

<body>

<p>Click the button to loop through a block of code five times.</p>

<button onclick="myFunction()">Try it</button>

<p id="demo"></p>

<script>

function myFunction() {

 var x = "", i;

 for (i=0; i<5; i++) {

 x = x + "The number is " + i + "
";

 }

 document.getElementById("demo").innerHTML = x;

}

</script>

</body>

</html>

214
`

Sr.No. Statement Description

1. switch
case

A block of statements in which execution of code depends upon
different cases. The interpreter checks each case against the value of the
expression until a match is found. If nothing matches,
a default condition will be used.

2. If else The if statement is the fundamental control statement that allows
JavaScript to make decisions and execute statements conditionally.

3. While The purpose of a while loop is to execute a statement or code block
repeatedly as long as expression is true. Once expression becomes false,
the loop will be exited.

4. do while Block of statements that are executed at least once and continues to be
executed while condition is true.

5. for Same as while but initialization, condition and increment/decrement is
done in the same line.

6. for in This loop is used to loop through an object's properties.

7. continue The continue statement tells the interpreter to immediately start the next
iteration of the loop and skip remaining code block.

8. break The break statement is used to exit a loop early, breaking out of the
enclosing curly braces.

9. function A function is a group of reusable code which can be called anywhere in
your programme. The keyword function is used to declare a function.

10. return Return statement is used to return a value from a function.

11. var Used to declare a variable.

12. try A block of statements on which error handling is implemented.

13. catch A block of statements that are executed when an error occur.

14. throw Used to throw an error.

9.6.1. Arrays in Java Script

JavaScript array is an object that represents a collection of similar type of elements.

There are 3 ways to construct array in JavaScript

215
`

1. By array literal
2. By creating instance of Array directly (using new keyword)
3. By using an Array constructor (using new keyword)

1) JavaScript array literal

The syntax of creating array using array literal is given below:

Var arrayname=[value1,value2,…valueN];

Values are contained inside [] are separated by , (comma).Let us consider example on array in

javascript.

<html>

<body>

<script>

var emp=["Vishnu","Chutki","Srivalli"];

for (i=0;i<emp.length;i++){

document.write(emp[i] + "
");

}

</script>

</body>

</html>

Output:

Vishnu

Chutki

Srivalli

2) JavaScript Array directly (new keyword)

The syntax of creating array directly is given below:

Var arrayname=new Array();

Here in the above syntax new keyword is used to create instance of array.

<html>

216
`

<body>

<script>

var i;

var emp = new Array();

emp[0] = "Vishnu";

emp[1] = "Chutki";

emp[2] = "Srivalli";

for (i=0;i<emp.length;i++){

document.write(emp[i] + "
");

}

</script>

</body>

</html>

Output

Vishnu

Chutki

Srivalli

3) JavaScript array constructor (new keyword)

Here, you need to create instance of array by passing arguments in constructor so that we don't
have to provide value explicitly.

The example of creating object by array constructor is given below.

<html>

<body>

<script>

var emp=new Array("Jai","Vijay","Smith");

for (i=0;i<emp.length;i++){

document.write(emp[i] + "
");

}

</script>

217
`

</body>

</html>

Output

Jai

Vijay

Smith

JavaScript Array Methods

Now let us see list of java script array methods and their description in detail

Methods Description

concat() It returns a new array object that
contains two or more merged arrays.

copywithin() It copies the part of the given array
with its own elements and returns the
modified array.

every() It determines whether all the elements
of an array are satisfying the provided
function conditions.

fill() It fills elements into an array with
static values.

filter() It returns the new array containing the
elements that pass the provided
function conditions.

find() It returns the value of the first element
in the given array that satisfies the

218
`

specified condition.

findIndex() It returns the index value of the first
element in the given array that satisfies
the specified condition.

forEach() It invokes the provided function once
for each element of an array.

includes() It checks whether the given array
contains the specified element.

indexOf() It searches the specified element in the
given array and returns the index of the
first match.

join() It joins the elements of an array as a
string.

lastIndexOf() It searches the specified element in the
given array and returns the index of the
last match.

map() It calls the specified function for every
array element and returns the new
array

pop() It removes and returns the last element
of an array.

push() It adds one or more elements to the end
of an array.

219
`

reverse() It reverses the elements of given array.

shift() It removes and returns the first element
of an array.

slice() It returns a new array containing the
copy of the part of the given array.

sort() It returns the element of the given
array in a sorted order.

splice() It add/remove elements to/from the
given array.

unshift() It adds one or more elements in the
beginning of the given array.

Arrays are Objects

Arrays are a special type of objects. The “typeof” operator in JavaScript returns "object" for

arrays. But, JavaScript arrays are best described as arrays. Arrays use numbers to access its

"elements". In this example, ”person[0]” returns John:

Example:

<!DOCTYPE html>
<html>
<body>

<h2>JavaScript Arrays</h2>

<p>Arrays use numbers to access its elements.</p>

<p id="demo"></p>

<script>
var person = ["John", "Doe", 46];
document.getElementById("demo").innerHTML = person[0];

220
`

</script>

</body>
</html>

Objects use names to access its "members". In this example, ”person.firstName” returns John:

<!DOCTYPE html>
<html>
<body>
<h2>JavaScript Objects</h2>
<p>JavaScript uses names to access object properties.</p>
<p id="demo"></p>
<script>
var person = {firstName:"John", lastName:"Doe", age:46};
document.getElementById("demo").innerHTML = person["firstName"];
</script>
</body>
</html>

.00009.6.2. Functions in Java Script

A function is a set of statements that take inputs, do some specific computation and produces

output. Basically, a function is a set of statements that performs some tasks or does some

computation and then returns the result to the user.

The idea is to put some commonly or repeatedly done task together and make a function so that

instead of writing the same code again and again for different inputs, we can call that function.

Like other programming languages, JavaScript also supports the use of functions. You must

already have seen some commonly used functions in JavaScript like alert(), this is a built-in

function in JavaScript. But JavaScript allows us to create user-defined functions also.

We can create functions in JavaScript using the keyword function. The basic syntax to create a

function in JavaScript is shown below.

Syntax

function functionname(parameter1, paramater2,…)

{

 //function body

221
`

}

To create a function in JavaScript, we have to first use the keyword function, separated by name

of function and parameters within parenthesis. The part of function inside the curly braces {} is

the body of the function.

Function Definition

Before, using a user-defined fuction in JavaScript we have to create one. We can use the above

syntax to create a function in JavaScript. Function definition are sometimes also termed as

function declaration or function statement.

Below are the rules for creating a function in JavaScript:

 Every function should begin with the keyword function followed by,

 A user defined function name which should be unique,

 A list of parameters enclosed within paranthesis and separated by commas,

 A list of statement composing the body of the function enclosed within curly braces {}.

Example:

function calcAddition(number1, number2)

{

 return number1 + number2;

}

In the above example, we have created a function named calcAddition, this function accepts two

numbers as parameters and returns the addition of these two numbers.

Function Parameters

Till now we have heard a lot about function parameters but haven\’t discussed them in details.

Parameters are additional information passed to a function. For example, in the above example,

the task of the function calcAddition is to calculate addition of two numbers. These two numbers

on which we want to perform the addition operation are passed to this function as parameters.

The parameters are passed to the function within parentheses after the function name and

separated by commas. A function in JavaScript can have any number of parameters and also at

the same time a function in JavaScript can not have a single parameter.

Calling Functions: After defining a function, the next step is to call them to make use of the

function. We can call a function by using the function name separated by the value of parameters

222
`

enclosed between parenthesis and a semicolon at the end. Below syntax shows how to call

functions in JavaScript:

Function (value1, value2,…)

Consider the following program that illustrate working of functions in java script

<script type = "text/javascript">

// Function definition
function welcomeMsg(name) {
 document.write("Hello " + name + " welcome to Rastriya Sanskrit viyapeeta");
}

// creating a variable
var nameVal = "Admin";

// calling the function
welcomeMsg(nameVal);

</script>

Output:

Hello Admin welcome to Rastriya Sanskrit vidyapeeta

9.6.3. Java Script Events

Event

JavaScript's interaction with HTML is handled through events that occur when the user or the
browser manipulates a page.

When the page loads, it is called an event. When the user clicks a button, that click too is an
event. Other examples include events like pressing any key, closing a window, resizing a
window, etc.

Developers can use these events to execute JavaScript coded responses, which cause buttons to
close windows, messages to be displayed to users, data to be validated, and virtually any other
type of response imaginable.

Events are a part of the Document Object Model (DOM) Level 3 and every HTML element
contains a set of events which can trigger JavaScript Code.

<!DOCTYPE html>
<html>
<body>
<script>
function sayHello() {
 alert("Onclick event.")

223
`

}
</script>
<p>Click Say Hello button and see result.</p>
<form>
 <input type="button" onclick="sayHello()" value="Say Hello" />
</form>
</body>
</html>

Below are the different types of EVENTS used in java script

Input Events

Attribute Description

Offline Triggers when the document goes offline

Onabort Triggers on an abort event

onafterprint Triggers after the document is printed

onbeforeonload Triggers before the document loads

onbeforeprint Triggers before the document is printed

onblur Triggers when the window loses focus

oncanplay Triggers when media can start play, but might has to stop for buffering

oncanplaythrough Triggers when media can be played to the end, without stopping for buffering

onchange Triggers when an element changes

onclick Triggers on a mouse click

oncontextmenu Triggers when a context menu is triggered

ondblclick Triggers on a mouse double-click

ondrag Triggers when an element is dragged

ondragend Triggers at the end of a drag operation

ondragenter Triggers when an element has been dragged to a valid drop target

ondragleave Triggers when an element is being dragged over a valid drop target

ondragover Triggers at the start of a drag operation

ondragstart Triggers at the start of a drag operation

ondrop Triggers when dragged element is being dropped

ondurationchange Triggers when the length of the media is changed

onemptied Triggers when a media resource element suddenly becomes empty.

onended Triggers when media has reach the end

224
`

onerror Triggers when an error occur

onfocus Triggers when the window gets focus

onformchange Triggers when a form changes

onforminput Triggers when a form gets user input

onhaschange Triggers when the document has change

oninput Triggers when an element gets user input

oninvalid Triggers when an element is invalid

onkeydown Triggers when a key is pressed

onkeypress Triggers when a key is pressed and released

onkeyup Triggers when a key is released

onload Triggers when the document loads

onloadeddata Triggers when media data is loaded

onloadedmetadata Triggers when the duration and other media data of a media element is loaded

onloadstart Triggers when the browser starts to load the media data

onmessage Triggers when the message is triggered

onmousedown Triggers when a mouse button is pressed

onmousemove Triggers when the mouse pointer moves

onmouseout Triggers when the mouse pointer moves out of an element

onmouseover Triggers when the mouse pointer moves over an element

onmouseup Triggers when a mouse button is released

onmousewheel Triggers when the mouse wheel is being rotated

onoffline Triggers when the document goes offline

onoine Triggers when the document comes online

ononline Triggers when the document comes online

onpagehide Triggers when the window is hidden

onpageshow Triggers when the window becomes visible

onpause Triggers when media data is paused

onplay Triggers when media data is going to start playing

onplaying Triggers when media data has start playing

onpopstate Triggers when the window’s history changes

onprogress Triggers when the browser is fetching the media data

onratechange Triggers when the media data’s playing rate has changed

225
`

onreadystatechange Triggers when the ready-state changes

onredo Triggers when the document performs a redo

onresize Triggers when the window is resized

onscroll Triggers when an element’s scrollbar is being scrolled

onseeked
Triggers when a media element’s seeking attribute is no longer true, and the
seeking has ended

onseeking
Triggers when a media element’s seeking attribute is true, and the seeking has
begun

onselect Triggers when an element is selected

onstalled Triggers when there is an error in fetching media data

onstorage Triggers when a document loads

onsubmit Triggers when a form is submitted

onsuspend
Triggers when the browser has been fetching media data, but stopped before
the entire media file was fetched

ontimeupdate Triggers when media changes its playing position

onundo Triggers when a document performs an undo

onunload Triggers when the user leaves the document

onvolumechange Triggers when media changes the volume, also when volume is set to “mute”

onwaiting Triggers when media has stopped playing, but is expected to resume

9.6.4. Summary

 Dynamic HyerText Markup Language (DHTML) is a combination of Web development

technologies used to create dynamically changing websites.

 Web pages may include animation, dynamic menus and text effects. The technologies

used include a combination of HTML, JavaScript or VB Script, CSS and the document

object model (DOM).

 CSS is a language that describes the style of an HTML document. CSS describes how

HTML elements should be displayed

 Javascript is a dynamic computer programming language. It is lightweight and most

commonly used as a part of web pages, whose implementations allow client-side script to

interact with the user and make dynamic pages.

226
`

 Java Script can be implemented using Java Script statements that are placed within the

<script>…</script> HMTL tags in a web page.

 An array can hold many values under a single name, and you can access the values by

referring to an index number. Creating an Array. Using the JavaScript Keyword new.

Access the Elements of an Array. Changing an Array Element. Access the

Full Array. Arrays are Objects.

9.6.5. SAQ

1. What is DHTML? Explain various features of DHTML.

2. What is CSS? How to integrate CSS to DHTML.

3. Discuss about Style sheets.

4. Design a Web page to insert a table dynamically.

227
`

Unit – X Working with forms an controls

10.0. Structure

10.1. Objective

10.2. Working with Forms and Controls

10.2.1. Forms

10.2.2. Input element

10.2.3. Select element

10.2.4. Text area elements

10.3. Summary

10.4. SAQ

10.1. Objective

From this unit students can understand what are form, how to generate online application form.

10.2. Working with Forms and Controls

HTML forms introduce the concept of interaction between the web user and the World Wide

Web, in particular the Web server or Host.

10.2.1. Forms

A form is exactly what it says it is, a form that the user fills-in. It can have a variety of different

types of input fields that you specify when you design the form (e.g. name, address, age, etc.)

and the user fills-in prior to submitting the form. The only problem with HTML forms is that

they are not much use by themselves because a traditional HTML form will only work in

conjunction with a specially written server-side CGI program or script.

There are two exceptions to this rule and the first exception is the 'mailto' protocol (Mailto is an

Internet protocol (similar to 'http:', 'ftp:', 'news:', etc) that provides a gateway to the Internet

email system). Not supported in Microsoft browsers, which enables the form's contents to be

mailed to an email address you specify. Using mailto is a really great way to practice developing

228
`

HTML forms without having to get involved in CGI programming or scripting at the same time,

but you will have to use a Netscape browser because Microsoft browsers don't fully support the

mailto protocol. The other exception is forms where the contents are sent to a JavaScript function

for processing. This subject is beyond the scope of this tutorial and will be dealt with more fully

in the JavaScript section of Web-Wise-Wizard.

Many other uses for forms and form elements have developed since the introduction of

JavaScript extensions to HTML forms and again these will be discussed more fully in the

JavaScript section. In the meantime we explain the form tag and it's attributes and demonstrate

each of the available form elements without the JavaScript extensions.

Syntax

<form action="action name" method="method type" enctype="encrypted code">

</form>

Where..

Action

This is where the Web browser sends the form's contents when the user submits the form. It can

be a CGI program (script) that processes the data and this can be on any Web server.

Alternatively, if you are using a Netscape Web browser it could be an email address.

 cgi program e.g. action="http://www.web-wise-wizard.com/cgi-bin/orders.cgi"

 mailto: e.g. action="mailto:gil@web-wise-wizard.com" (Netscape browsers only)

cgi program A program or script that runs as a process on a Web server and can access the

users CGI variables. CGI programs and scripts can be written in a variety of languages which

include 'Perl', 'C/C++', etc.

mailto: An Internet protocol (similar to 'http:', 'ftp:', 'news:', etc) that provides a gateway to the

Internet email system. Not supported in Microsoft browsers.

229
`

Method

Specifies which HTTP method will be used to pass the form's contents to the CGI interface on

the Web server.

 get (default) The form's contents are placed in a CGI variable called 'QUERY_STRING'

on the Web server and are accessed by a CGI program (or script) using that variable.

 post The form's contents are sent to stdin (a 'C' type input stream) on the Web server and

the length of the input stream is set in a CGI variable called 'CONTENT_LENGTH'. The

CGI program (or script) accesses the contents via stdin.

notes ...

http Hyper-Text Transfer Protocol: A pre-defined protocol to enable communication between a

Web browser and a Web server on the World Wide Web.

cgi Common Gateway Interface <www>: A standard for running external programs from a

World-Wide Web HTTP server. CGI specifies how to pass arguments to the executing program

as part of the HTTP request. It also defines a set of environment variables. Commonly, the

program will generate some HTML which will be passed back to the browser but it can also

request URL redirection.

Form Elements Form elements could be considered the building blocks of a form and I have

even heard them described as toys in a toy box. Here we list and demonstrate all elements that

you could use when designing and creating an HTML form.

Enctype

Specifies how the form's contents should be encrypted.

 application/x-www-form-urlencoded (default) If you are submitting your form using

the mailto protocol then our email management program will normally convert this

encryption back to plain text in name/value pairs.

230
`

 multipart/form-data This is normally used in conjunction with the 'file' element (i.e.

input type="file").

 text/plain Specifies that the form's contents should not be encrypted. Contents sent as

plain text in name/value pairs.

Target

Commonly, a CGI program or script will generate an HTML response which it will pass back to

the Web browser. The target attribute specifies where that response should be sent. Possible

options are the four HTML magic target names or a names window or frame.

 _blank Display the response in a newly opened blank browser window.

 _self (the default) Display the response in the current frame or window.

 _parent Display the response in the parent of the current frame or window.

 _top Display the response as the top document in the current window.

 windowName or frameName Display the response in a named frame or window, or if

no match is found for the name then display the response in a newly opened browser

window using the specified name for the window.

Example

<form action="mailto:you@youremail" method="get" enctype="application/x-www-form-
urlencoded"">

<!-- FORM ELEMENTS ENCLOSED BETWEEN FORM START AND FORM END TAGS -->

</form>

The Form's Action Attribute and the Submit Button

When the user clicks on the "Submit" button, the content of the form is sent to the server. The

form's action attribute defines the name of the file to send the content to. The file defined in the

action attribute usually does something with the received input

<form name="input" action="html_form_submit.asp"

method="get">

231
`

Username:

<input type="text" name="user">

<input type="submit" value="Submit">

</form>

How it looks in a browser:

Username:

If you type some characters in the text field above, and click the "Submit" button, the browser

will send your input to a page called "html_form_submit.asp". The page will show you the

received input.

10.2.2. Input elements

The most used form tag is the <input> tag. The type of input is specified with the type attribute.

The most commonly used input types are explained below.

Text Fields

Text fields are used when you want the user to type letters, numbers, etc. in a form

<form>

First name:

<input type="text" name="firstname">

Last name:

<input type="text" name="lastname">

</form>

How it looks in a browser:

Submit

232
`

First name:

Last name:

Note that the form itself is not visible. Also note that in most browsers, the width of the text field

is 20 characters by default.

Radio Buttons

Radio Buttons are used when you want the user to select one of a limited number of choices.

<form>

<input type="radio" name="sex" value="male"> Male

<input type="radio" name="sex" value="female"> Female

</form>

How it looks in a browser:

Male

Female

Note that only one option can be chosen.

Checkboxes

Checkboxes are used when you want the user to select one or more options of a limited number

of choices.

<form>

I have a bike:

<input type="checkbox" name="vehicle" value="Bike">

I have a car:

233
`

<input type="checkbox" name="vehicle" value="Car">

I have an airplane:

<input type="checkbox" name="vehicle" value="Airplane">

</form>

How it looks in a browser:

I have a bike:

I have a car:

I have an airplane:

102.3. Select elements

HTML <select> tag is used to create drop down list of options, which appears when clicking on
form element and allows the user to choose one of the options.

The <option> tag is used to define the possible options to choose from. The tag is put into
<select> tag.

The first option from the options’ list is selected by default. To change predefined
option selectedattribute is used.

The <optgroup> tag is used to group several options into one group.The content of <optgroup>
looks like heading in bold.

The look of the list depends onsize attribute, which defines the height of the list.The width of the
list depends on the length of the text inside <option> tag.The width can be regulated with CSS
styles as well.

NOTE: if you need to send the data to the server or refer to the list with scripts, <select>

tag should be put inside <form> tag.

234
`

Syntax

The content is written between opening (<select>) and closing (</select>) tags. Closing tag is

mandatory.

Example

<!DOCTYPE html>
<html>
 <head>
 <title>Title of the document</title>
 </head>
 <body>
 <form>
 <select>
 <option value="books">Books</option>
 <option value="html">HTML</option>
 <option value="css">CSS</option>
 <option value="php">PHP</option>
 <option value="js">JavaScript</option>
 </select>
 </form>
 </body>
</html>
Output

Try for your self

10.2.4. Text area

The <textarea> tag defines a multi-line text input control. A text area can hold an unlimited

number of characters, and the text renders in a fixed-width font (usually Courier).

The size of a text area can be specified by the cols and rows attributes, or even

better; through CSS' height and width properties.

Example

<!DOCTYPE html>
<html>
<body>

<textarea rows="4" cols="50">
At RSVP.com you will learn how to make a website. We offer tutorials in our DDE

235
`

</textarea>

</body>
</html>
Output

At RSVP.com you will learn how to make a website. We offer tutorials in our DDE

Form Tags

Tag Description

<form> Defines a form for user input

<input> Defines an input field

<textarea> Defines a text-area (a multi-line text input control)

<label> Defines a label to a control

<fieldset> Defines a fieldset

<legend> Defines a caption for a fieldset

<select> Defines a selectable list (a drop-down box)

<optgroup> Defines an option group

<option> Defines an option in the drop-down box

<button> Defines a push button

<isindex> Deprecated. Use <input> instead

10.3. Summary

236
`

1. Forms provide a basic interface for adding interactivity to a web site. Html supports traditional

graphical user interface controls such as check boxes, radio buttons, pull-down menus, scrolled

lists, multi and single line text areas and buttons.

2. The most used form tag is the <input> tag. The type of input is specified with the type attribute.

The most commonly used input types.

3. Text fields are used when you want the user to type letters, numbers, etc. in a form

4. Radio Buttons are used when you want the user to select one of a limited number of choices.

5. Checkboxes are used when you want the user to select one or more options of a limited number of

choices.

10.4. SAQ
1. Write short notes on forms?
2. Design a web page which is similar to an application form for taking admission into sastri Iy

through DDE mode?

